

	Ценовые группы (ЦГ)* ЦГ 101, 131, 191
4/2	Введение
$\begin{aligned} & 4 / 5 \\ & 4 / 8 \\ & 4 / 18 \\ & 4 / 34 \end{aligned}$	Устройства плавного пуска (УПП) SIRIUS 3RW Общая информация 3RW30 стандартного назначения 3RW40 стандартного назначения 3RW44 с расширенными функциями
4/62	Полупроводниковые коммутационные аппараты для активных нагрузок Общая информация Полупроводниковые реле
4/65	Общая информация
4/66	Полупроводниковые реле SIRIUS 3RF21, 1-фазные, 22,5 мм
4/71	Полупроводниковые реле SIRIUS 3RF20, 1-фазные, 45 мм
4/74	Полупроводниковые реле SIRIUS 3RF22, 3-фазные, 45 мм Полупроводниковые контакторы
4/77	Общая информация
4/78	Полупроводниковые контакторы SIRIUS 3RF23,1-фазные
4/87	Полупроводниковые контакторы SIRIUS 3RF24, 3-фазные Функциональные модули для 3RF2
4/91	Общая информация
4/98	Преобразователи сигналов для 3RF2
4/99	Контроль нагрузки для 3RF2
4/100	Контроль тока нагрева для 3RF2
4/101	Задатчики мощности для 3RF2
4/102	Регуляторы мощности для 3RF2

	Полупроводниковые контакторы для коммутации электродвигателей новинка
$4 / 103$	Общая информация
$4 / 106$	Полупроводниковые контакторы прямого пуска SIRIUS 3RF34, 3-фазные Полупроводниковые реверсивные контакторы SIRIUS 3RF34, 3-фазные
$4 / 109$	Дополнительная техническая информация

приведена на сайте
www.siemens.de/industrial-

controls/support

В разделе "Produktliste":

- Технические характеристики

В разделе "Beitragsliste":

- Новости
- Загрузки
- Часто задаваемые вопросы
- Руководства/Руководства по эксплуатации
- Характеристики
- Сертификаты

и на сайте
www.siemens.de/industrial-
controls/configurators
а так же на сайте
www.siemens.ru/sirius

- Конфигураторы

Примечание

Информация для подбора полупроводниковых контакторов 3RF24 для коммутации
электродвигателей приведена

- в интерактивном каталоге CA 01
- в системе Industry Mall
*Изменения ценовых групп:
см. первую страницу каталога

Полупроводниковые коммутационные аппараты

Введение

0630p

3RW30 3RW40	3RW44		
		Заказной номер	Страница
Устройства плавного пуска 3RW			
Устройства плавного пуска 3RW стандартного назначения			
Устройства плавного пуска 3RW30	- Для плавного пуска стандартных 3-фазных асинхронных электродвигателей (выбег - свободный) - Для лёгкого пуска - Диапазон мощностей до 55 кВт (при 400 В)	3RW30	4/8
Устройства плавного пуска 3RW40	- Для плавного пуска и останова 3-фазных асинхронных двигателей - Электронная защита двигателя от перегрузки и защита силовых тиристоров устройства от перегрева (собственная защита) - Регулируемое ограничение тока при пуске - Для лёгкого и тяжёлого пуска (класс $10,15,20$) - Диапазон мощностей до 250 кВт (при 400 В)	3RW40	4/18
Устройства плавного пуска 3RW с расширенными функциями			
Устройства плавного пуска 3RW44	- Устройства плавного пуска SIRIUS 3RW44, наряду с плавным пуском и остановом, предлагают также многочисленные дополнительные функции. - Прогрев двигателя перед пуском - Опциональное подключение к PROFIBUS - 3 набора параметров - Для лёгкого, тяжёлого или особо тяжёлого пуска (класс 10-30) - Диапазон мощностей - до 710 кВт (при 400 В) при стандартном подключении (в линию) - до 1200 кВт (при 400 В) при подключении по схеме "внутри треугольника"	3RW44	4/34

Устройства плавного пуска SIRIUS 3RW

Устройства плавного пуска SIRIUS 3RW обеспечивают плавный пуск и останов стандартных 3 -фазных асинхронных электродвигателей. В зависимости от требуемого объема функций может быть выбрано:

- Устройства плавного пуска стандартного назначения
- Устройства плавного пуска с расширенными функциями

SIRIUS 3RW - надёжное решение задач пуска и останова электродвигателей

Некоторые функции устройств плавного пуска SIRIUS*:

- Плавный запуск электродвигателя
- Плавный пуск и останов электродвигателя
- Защита электродвигателя от перегрузки
- Собственная защита устройства от перегрева
- Термисторная защита электродвигателя
- Регулирование крутящего момента

Краткий обзор преимуществ устройств плавного пуска SIRIUS:

- Уменьшение бросков тока при пуске
- Снижение провалов сетевого напряжения во время пуска
- Снижение нагрузки на сеть
- Уменьшение нагрузок на механические компоненты привода
- Значительная экономия места и проводных соединений по сравнению с традиционными пускателями прямого пуска или пускателями по схеме "звезда-треугольник"
- Необслуживаемые силовые коммутационные элементы
- Простое управление пуском электродвигателя
- Стандартная модульная конструкция SIRIUS

Устройства плавного пуска SIRIUS 3RW

\checkmark Функция доступна
-- Функция отсутствует

1) Для 3RW30 - только функция плавного пуска, выбег - свободный.
2) Наличие функции (до типоразмера S3) зависит от исполнения устройства
3) Для 3RW40 2. - 3RW40 4.; для 3RW40 5. и 3RW40 7.- опционально.
4) При необходимости устройства плавного пуска и двигатель выбирать с запасом
5) Функция недоступна при подключении по схеме "внутри треугольника"
6) Функция трассировки доступна при использовании ПО Soft Starter ES
7) При применении аппарата защиты двигателя от перегрузки в соответствии с ATEX необходимо установить предвключенный контактор
Дополнительную информацию можно найти на веб-сайте: www.siemens.de/sanftstarter

Устройства плавного пуска SIRIUS 3RW

Общая информация

Помощь при подборе устройств плавного пуска

Мощности двигателей, указанные в данных выбора и заказа, являются только ориентировочными. Параметры устройства плавного пуска должны всегда определяться по номинальному рабочему току электродвигателя. Устройства плавного пуска 3RW рассчитаны на электродвигателя. Устроиства плавного пуска зRW рассчитаны на нормальные условия пуска. При бол
выбирать более мощные устройства

Подробные технические данные для корректного выбора оборудования для конкретного применения см. в соответствующем руководстве

Рекомендуется использовать программу выбора устройств плавного пуска Win-Soft Starter.
Единицы измерения мощностей электроэлектродвигателей базируются на DIN 42973 (кВт) и NEC 96/UL508 (л.с.)

Устройства плавного пуска SIRIUS 3RW

Общая информация

Схема заказного номера

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Позиция заказного номера \& \begin{tabular}{l}
\[
\text { 1. }-3 .
\] \\
ㅁㅁㅁ
\end{tabular} \& 4. \& \[
5
\] \& \[
6 .
\] \& \[
7 .
\] \& - \& \& \begin{tabular}{l}
9. \\
.

\end{tabular} \& \[

10 .

\] \& \[

11 .

\] \& \[

12 .

\] \& - \& \[

13 .

\] \& \[

14

\] \& \[

15 .

\] \& \[

16 .
\]

\hline Устройства плавного пуска \& 3 RW \& \& \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Семейство устройства плавного пуска SIRIUS \& \& \square \& \square \& \& \& \& \& \& \& \& \& \& \& \& \&

\hline Типоразмер \& \& \& \& \square \& \& \& \& \& \& \& \& \& \& \& \&

\hline Номинальный рабочий ток $I_{\text {e }}$ \& \& \& \& \& \square \& \& \& \& \& \& \& \& \& \& \&

\hline Тип присоединения (винтовые/пружинные клеммы) \& \& \& \& \& \& \& \square \& \& \& \& \& \& \& \& \&

\hline Функциональность устройства плавного пуска (байпас, вход для термисторной защиты и т.д.) \& \& \& \& \& \& \& \& \square \& \square \& \& \& \& \& \& \&

\hline Номинальное питающее напряжение управления U_{s} \& \& \& \& \& \& \& \& \& \& \square \& \& \& \& \& \&

\hline Номинальное рабочее напряжение U_{e} \& \& \& \& \& \& \& \& \& \& \& \square \& \& \& \& \&

\hline Опции \& \& \& \& \& \& \& \& \& \& \& \& \& \square \& \square \& \square \& \square

\hline Пример заказного номера \& 3 RW \& 4 \& 0 \& 2 \& 4 \& - \& 1 \& B \& B \& 1 \& 4 \& \& \& \& \&

\hline
\end{tabular}

Примечание
Схема заказного номера служит только для разъяснения
и лучшего понимания логики заказных номеров.
Для заказа устройств используйте указанные в каталоге заказные номера в соответствии с требованиями.

Преимущество

- Бесступенчатый запуск электродвигателя
- Плавный пуск и останов электродвигателя (для 3RW30 только плавный пуск, выбег - свободный)
- Уменьшение бросков тока при запуске
- Снижение провалов напряжения во время пуска
- Уменьшение нагрузки на сеть
- Уменьшение нагрузок в механических узлах привода
- Значительная экономия места и проводных соединений по сравнению с традиционными пускателями прямого пуска и пускателями по схеме "звезда-треугольник"
- Необслуживаемые силовые коммутационные элементы
- Простое управление пуском электродвигателя
- Стандартная модульная конструкция SIRIUS

Технические данные

Допустимая высота монтажа

При высоте установки более 2000 м максимальное допустимое рабочее напряжение уменьшается до 460 В.

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

3RW30

O6зор

Устройства плавного пуска SIRIUS 3RW30 понижают напряжение на двигателе посредством регулируемой фазовой отсечки и линейно увеличивают его от установленного пускового напряжения до номинального рабочего напряжения. Эти аппараты ограничивают пусковой ток, а также вращающий момент при разгоне электродвигателя и позволяют избежать бросков, возникающих при прямом пуске или пуске по схеме "звездатреугольник". Таким образом существенно снижаются провалы напряжения в сети и нагрузка на механические узлы привода.

Устройства плавного пуска создают щадящий режим пуска для подключенных устройств, уменьшая тем самым их износ и обеспечивая длительный и бесперебойный производственный процесс. В отличие от двухступенчатого пуска по схеме "звезда-треугольник" при постоянном напряжении, в УПП есть возможность регулирования значение начального напряжения пуска и устройства могут индивидуально настраиваться под требования и условия для конкретного применения в зависимости от типа нагрузки

Устройства плавного пуска SIRIUS 3RW30 характеризуются прежде всего компактным корпусом и малой установочной шириной. Встроенные шунтирующие (байпасные) контакты предотвращают потери мощности на силовых полупроводниках (тиристорах) после разгона двигателя Это уменьшает тепловые потери, благодаря чему становятся возможными компактные конструкции корпусов и отпадает необходимость во внешних обходных схемах.

УПП SIRIUS 3RW30 доступны в двух исполнениях:

- Стандартное исполнение устройств типоразмеров S00, S0, S2 и S3 (до 106A) с интегрированными шунтирующими контактами для запуска стандартных асинхронных 3фазных электродвигателей с постоянным числом оборотов.
- Исполнение устройств в корпусе 22,5 мм для лёгких условий пуска небольших 3-фазных электродвигателей (до ЗА) с постоянным числом оборотов без встроенных байпасных контактов

Функциональность

УПП SIRIUS 3RW30 - компактные устройства, экономия места в электрошкафу по сравнению со сборкой по схеме "звезда-треугольник" сравнимой мощности может составлять до 60\%. Однако экономится не только место, но и отпадает необходимость дополнительного проводного монтажа, необходимого для подключения аппаратов пускателей по схеме "звезда-треугольник". Это особенно заметно при сборке и монтаже пускателей для электродвигателей большой мощности, так как для них не предлагаются решения с полностью смонтированными и подключенными аппаратами.
Одновременно уменьшается количество кабелей от пускателя к двигателю с шести до трех. Компактность, малое время подготовки, простой монтаж и быстрый ввод в эксплуатацию обеспечивают значительное снижение издержек.

Шунтирующие (байпасные) контакты этих УПП во время работы защищаются встроенной электронной системой подавления появления дуги. Это предупреждает повреждение шунтирующих контактов в случае неисправности, например, при кратковременном пропадании управляющего напряжения, механических вибрациях или при возникновении дефектов вследствие износа элементов цепи управления или пружин главных контактов.

Polarity balancing

В устройствах плавного пуска с двумя управляемыми фазами в неуправляемой фазе протекает результирующий ток, получающийся вследствие наложения токов двух управляемых фаз. В результате во время разгона двигателя возникает несимметричное распределение трех фазных токов. Это явление не критично для большинства применений, но при возможности должно быть минимизировано. Наряду с асимметрией, управление пуском 2-мя силовыми тиристорами вызывает появление составляющей постоянного тока, которая служит причиной появления тормозного момента, и при начальных напряжениях пуска менее 50 \% от номинального рабочего напряжения могла бы приводить к сильным шумам в двигателе. В УПП SIRIUS с двумя управляемыми фазами применяется запатентованный метод управления "Polarity Balancing" (баланс полярности) для подавления возникновения этой составляющей. УПП SIRIUS с двухфазным управлением обеспечивают особенно плавный разгон электродвигателя с более равномерным увеличением числа оборотов, крутящего момента и тока. При этом акустические параметры такого процесса пуска практически приближаются к параметрам плавного пуска с трехфазным управлением. Это делает возможным непрерывное динамическую балансировку токовых полуволн разной полярности во время разгона электродвигателя. Поэтому метод и получил название "Polarity Balancing".

- Плавный пуск с рампой напряжения; диапазон регулировки пускового напряжения U_{s} : от 40 до 100 \%, время разгона t_{R} может регулироваться от 0 до 20 с
- Интегрированная система шунтирующих (байпасных) контактов для минимизации потерь мощности
- Настройка двумя поворотными переключателями
- Простой монтаж и ввод в эксплуатацию
- Номинальное рабочее напряжение: 200-480 B/ 50/60 Гц,
- Два исполнения устройств для питающих напряжений управления 24B AC/DC или 110-230B AC/DC
- Широкий диапазон температур окр. среды: от -25 до +60 ${ }^{\circ} \mathrm{C}$
- Интегрированный выход обеспечивает сигнализацию состояния устройства (см. диаграмму состояний на стр. 4/17).

Область применения

Устройства плавного пуска SIRIUS 3RW30 предназначены для плавного пуска стандартных асинхронных 3-фазных электродвигателей со свободным выбегом.

Благодаря инновационному управлению по двум фазам, во всех 3 фазах ограничивается уровень тока на протяжении всего времени разгона электродвигателя. Благодаря плавному нарастанию напряжения снижаются броски тока и момента, неустранимые, например, в пускателях прямого пуска или в пускателях по схеме "звезда-треугольник".

Области применения

См. "Таблица выбора устройств плавного пуска" на странице 4/6

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

Технические данные

Тип		3RW30 1.	3RW30 2.	3RW30 3.	3RW30 4.
Механические параметры и окружающая среда					
Габаритные размеры (ШхВхГ) - Винтовые клеммы - Пружинные клеммы	$\begin{aligned} & \text { MM } \\ & \text { MM } \end{aligned}$	$\begin{aligned} & 45 \times 95 \times 151 \\ & 45 \times 117,2 \times 151 \end{aligned}$	$\begin{aligned} & 45 \times 125 \times 151 \\ & 45 \times 150 \times 151 \end{aligned}$	$\begin{aligned} & 55 \times 144 \times 168 \\ & 55 \times 144 \times 168 \end{aligned}$	$\begin{aligned} & 70 \times 160 \times 186 \\ & 70 \times 160 \times 186 \end{aligned}$
Допустимая температура окружающей среды При эксплуатации При хранении	\circ 	$-25 \ldots+60$; (требуется снижение номинальных значений параметров $-40 \ldots+80$			
Вес	кг	0,58	0,69	1,20	1,71
Допустимое монтажное положение ${ }^{1 \text {) }}$ (дополнительный вентилятор недоступен)					
Монтаж ${ }^{1)}$ Отдельный монтаж			$\begin{aligned} & 15 \mathrm{~mm}(\geq 0.59 \mathrm{in}) \\ & 40 \mathrm{~mm}(\geq 1.56 \mathrm{in}) \\ & 60 \mathrm{~mm}(\geq 2.36 \mathrm{in}) \end{aligned}$		$\begin{aligned} & 30 \mathrm{~mm}(\geq 1.18 \mathrm{in}) \\ & 40 \mathrm{~mm}(\geq 1.56 \mathrm{in}) \\ & 60 \mathrm{~mm}(\geq 2.36 \mathrm{in}) \end{aligned}$
Допустимая высота установки над уровнем моря	M	до 5000 (требуется снижение номинальных значений параметров (дерейтинг) при установке выше 1000 м., см. характеристику на странице 4/7)			
Степень защиты IP		IP20 для 3RW30 1. и 3RW30 2.; IP00 для 3RW30 3. и 3RW30 4.			

1) При отклонениях учитывать снижение номинальных значений параметров (см. руководство по приборам в главе "Проектирование").

Тип			3RW30 1., 3RW30 2.		3RW30 3., 3RW30 4.	
Управляющая электроника						
Номинальные значения Номинальное питающее напряжение управления - Допуск	Клеммы A1/A2	$\begin{aligned} & \text { B } \\ & \% \end{aligned}$	$\begin{aligned} & 24 \\ & +20 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & 24 \\ & +20 \end{aligned}$	$\begin{aligned} & 110 \ldots 230 \\ & -15 /+10 \end{aligned}$
Номинальная частота - Допуск		$\begin{aligned} & \text { ГL } \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \end{aligned}$			
Тип			3RW30 1.	3RW30 2.	3RW30 3.	3RW30 4.
Силовая электроника						
Номинальное рабочее напряжение Допуск		$\begin{aligned} & \text { AC B } \\ & \% \end{aligned}$	$\begin{aligned} & 200 \ldots 480 \\ & -15 /+10 \end{aligned}$			
Номинальная частота Допуск		$\begin{aligned} & \hline \text { ГL } \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \\ & \hline \end{aligned}$			
Непрерывный режим до $40{ }^{\circ} \mathrm{C}$ (\% от $\left.I_{\mathrm{e}}\right)$		\%	115			
Минимальная нагрузка (\% от I_{e})		\%	10 (более 2 A)			
Максимальная длина проводников между устр пуска и двигателем	плавного	м	300			

1) Рабочий ток двигателя должен быть не менее указанного процента от номинального тока УПП SIRIUS (I_{e}).
2) При превышении этого значения корректная работа УПП не гарантируется, возможны сбои при пуске из-за ёмкости проводников.

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

3RW30

Тип		3RW30 03-1CB54	3RW30 03-2CB54
Механические параметры и окружающая среда			
Габаритные размеры (ШхВхГ) - Винтовые клеммы - Пружинные клеммы	$\begin{aligned} & \text { MM } \\ & \text { MM } \end{aligned}$	$22,5 \times 100 \times 120$	$22,5 \times 101,6 \times 120$
Допустимая температура окружающей среды При эксплуатации При хранении	a a ${ }^{\circ} \mathrm{C}$	$-25 \ldots+60$ (требует (дерейтинг) при те $-40 \ldots+80$	нальных значений параметров ${ }^{\circ} \mathrm{C}$; см. руководство);
Bec	кг	0,207	0,188
Допустимое монтажное положение			
Допустимая высота установки над уровнем моря	M	до 5000 (требуется снижен при установке выш	значений параметров (дерейтинг) актеристику на странице 4/7)
Степень защиты IP по IEC 60529		IP20 (область присоединения IP00)	
Управляющая электроника			
Номинальные значения Номинальное питающее напряжение управления - Допуск	$\begin{aligned} & \text { B } \\ & \% \end{aligned}$	$\begin{aligned} & 24 \ldots 230 \mathrm{AC} / \mathrm{DC} \\ & \pm 10 \end{aligned}$	
Номинальная частота при AC - Допуск	$\begin{aligned} & \text { Гц } \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \\ & \hline \end{aligned}$	
Силовая электроника			
Номинальное рабочее напряжение Допуск	$\begin{aligned} & \text { AC B } \\ & \% \end{aligned}$	$\begin{aligned} & 200 \ldots 400 \\ & \pm 10 \end{aligned}$	
Номинальная частота Допуск	$\begin{aligned} & \text { Гц } \\ & \% \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \end{aligned}$	
Непрерывный режим (\% от I_{e})	\%	100	
Минимальная нагрузка ${ }^{1}$ (\% от I_{e}); при $40^{\circ} \mathrm{C}$	\%	9	
Максимальная длина проводников между устройством плавного пуска и двигателем	M	$100^{2)}$	

1) Рабочий ток двигателя должен быть не менее указанного процента от номинального тока УПП SIRIUS (I_{e}).
2) При превышении этого значения корректная работа УПП не гарантируется, возможны сбои при пуске из-за ёмкости проводников

Устройства плавного пуска SIRIUS 3RW 3RW30，3RW40 стандартного назначения

Abstract

Фидеры электродвигателей с устройствами плавного пуска

Тип координации фидеров электродвигателей с УПП зависит от требований конкретного применения．

Для соответствия типу координации 1 （ToC1）достаточно сборки без предохранителей（комбинация автоматический выключатель＋УПП）．
Если требуется соответствие типу координации 2 （ТоС2），то силовые полупроводники устройства плавного пуска должны защищаться соответствующими рекомендованными SIEMENS быстродействующими предохранителями для защиты электронных компонентов

Тип координации＂1＂согласно IEC 60947－4－1： После короткого замыкания устройство выходит из строя и непригодно для дальнейшей эксплуатации（защита персонала и установки обеспечена）．
［о⿱丷天心 2 Тип координации＂2＂согласно IEC 60947－4－1： После короткого замыкания устройство пригодно для дальнейшей эксплуатации（защита персонала и установки обеспечена）．

Понятие＂Тип координации＂относится только к сборке УПП в сочетании с соответствующим установленным аппаратом защиты（авт． выключатель／предохранители），но не к другим компонентам фидера．

Типы координации обозначены соответствующими символами в таблицах выбора рекомендованных аппаратов защиты для устройств плавного пуска．

Сборки без предохранителей

| Устройства
 плавного
 пуска | | Автоматический выключатель ${ }^{1)}$ |
| :--- | :--- | :--- | :--- | :--- |

Тип координации 1				
3RW30 03	3	3RV10 11－1EA10	50	4
3RW30 13	3,6	3RV10 21－1FA10	10	5
3RW30 14	6,5	3RV10 21－1HA10	10	8
3RW30 16	9	3RV10 21－1JA10	10	10
3RW30 17	12,5	3RV10 21－1KA10	10	12,5
3RW30 18	17,6	3RV10 21－4BA10	10	20
3RW30 26	25	3RV10 21－4DA10	55	25
3RW30 27	32	3RV10 31－4EA10	55	32
3RW30 28	38	3RV10 31－4FA10	55	40
3RW30 36	45	3RV10 31－4GA10	20	45
3RW30 37	63	3RV10 41－4JA10	20	63
3RW30 38	72	3RV10 41－4KA10	20	75
3RW30 46	80	3RV10 41－4LA10	11	90
3RW30 47	106	3RV10 41－4MA10	11	100

1）При выборе аппарата учитывайте номинальный рабочий ток электродвигателя．

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

3RW30

Сборки с предохранителями (обеспечивается только защита линии)

Устройства плавного пуска$\begin{aligned} & \left.\quad \begin{array}{r} \text { ToC } \\ 1 \\ \hline \end{array}\right] \\ & \text { Q11 } \\ & \text { Тип } \\ & \hline \end{aligned}$	Ном. раб. ток	Предохранители для защиты линий, макс.		Типоразмер	Сетевой контактор
			Ном. раб. ток		(опционально)
	A	F1 Тип	A		Q21
Тип координации ${ }^{1)}$: $I_{q}=65$ кА при $480 \mathrm{~B}+10 \%$					
3RW30 03 ${ }^{\text {2) }}$	3	3NA3 805 ${ }^{3}$	20	000	3RT10 15
$\begin{aligned} & \text { 3RW30 } 13 \\ & \text { 3RW30 } 14 \end{aligned}$	$\begin{aligned} & 3,6 \\ & 6,5 \end{aligned}$	3NA3 803-6 3NA3 805-6	$\begin{aligned} & 10 \\ & 16 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 15 \\ & \text { 3RT10 } 15 \end{aligned}$
3RW30 16 3RW30 17 3RW30 18	$\begin{gathered} 9 \\ 12,5 \\ 17,6 \end{gathered}$	3NA3 807-6 3NA3 810-6 3NA3 814-6	$\begin{aligned} & 20 \\ & 25 \\ & 35 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \end{aligned}$	3RT10 16 3RT10 24 3RT10 26
3RW30 26 3RW30 27 3RW30 28	25 32 38	3NA3 822-6 3NA3 824-6 3NA3 824-6	$\begin{aligned} & 63 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	3RT10 26 3RT10 34 3RT10 35
3RW30 36 3RW30 37 3RW30 38	45 63 72	3NA3 130-6 3NA3 132-6 3NA3 132-6	$\begin{aligned} & 100 \\ & 125 \\ & 125 \end{aligned}$	1 1 1	3RT10 36 3RT10 44 3RT10 45
$\begin{aligned} & \text { 3RW30 } 46 \\ & \text { 3RW30 } 47 \end{aligned}$	80 106	3NA3 136-6 3NA3 136-6	160	1	$\begin{aligned} & \text { 3RT10 } 45 \\ & \text { 3RT10 } 46 \end{aligned}$

1) Тип координации "1" относится к сборке УПП в сочетании с \quad 2) $I_{\mathrm{q}}=50 \mathrm{kA} п р и 400$ В.

соответствующими предохранителями, но не к другим компонентам, установленным в фидере.
3) 3NA3 805-1 (NH00), 5SB2 61 (DIAZED), 5SE2 201-6 (NEOZED).

Сборки с предохранителями SITOR 3NE1 (защита линий и силовых полупроводников)

оотвтстующие держатели предохранителей/ разъединители см. в каталоге LV 10.1 --> Разъединители нагрузки" и в каталоге LV 10.1 --> "Предохранители для защиты полупроводников SITOR" или на www.siemens.de/sitor

Устройства плавного пуска	Ном. раб. ток	Полнодиапазонные предохранители			Сетевой контактор (опционально) Q21
			Ном. раб. ток	Типоразмер	
	A	$\begin{aligned} & \text { F'1 } \\ & \text { Tип } \end{aligned}$	A		
Тип координации 2^{1}) $I_{\text {q }}=65$ кА при 480 В $+10 \%$					
3RW30 03 ${ }^{\text {2) }}$	3	3NE1 813-0 ${ }^{3)}$	16	000	3RT10 15
3RW30 13 3RW30 14	$\begin{aligned} & 3,6 \\ & 6,5 \end{aligned}$	$\begin{aligned} & \text { 3NE1 813-0 } \\ & \text { 3NE1 813-0 } \end{aligned}$	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \end{aligned}$	3RT10 15 3RT10 15
3RW30 16 3RW30 17 3RW30 18	$\begin{gathered} 9 \\ 12,5 \\ 17,6 \end{gathered}$	3NE1 813-0 3NE1 813-0 3NE1 814-0	$\begin{aligned} & 16 \\ & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & 000 \\ & 000 \\ & 000 \end{aligned}$	3RT10 16 3RT10 24 3RT10 26
3RW30 26 3RW30 27 3RW30 28	$\begin{aligned} & 25 \\ & 32 \\ & 38 \end{aligned}$	3NE1 803-0 3NE1 020-2 3NE1 020-2	$\begin{aligned} & 35 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 000 \\ & 00 \\ & 00 \end{aligned}$	3RT10 26 3RT10 34 3RT10 35
3RW30 36 3RW30 37 3RW30 38	$\begin{aligned} & 45 \\ & 63 \\ & 72 \end{aligned}$	3NE1 020-2 3NE1 820-0 3NE1 820-0	$\begin{aligned} & 80 \\ & 80 \\ & 80 \end{aligned}$	$\begin{aligned} & 00 \\ & 000 \\ & 000 \end{aligned}$	3RT10 36 3RT10 44 3RT10 45
3RW30 46 3RW30 47	$\begin{array}{r} 80 \\ 106 \end{array}$	$\begin{aligned} & \text { 3NE1 021-0 } \\ & \text { 3NE1 022-0 } \end{aligned}$	$\begin{aligned} & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \end{aligned}$	3RT10 45 3RT10 46

1) Тип координации "2" относится к сборке УПП в сочетании с соответствующими предохранителями, но не к другим компонентам, установленным в фидере.
${ }^{2)} I_{\mathrm{q}}=50$ кА при 400 B .

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Сборки с предохранителями SITOR 3NE3

(защита силовых полупроводников предохранителями, защита линий и защита от перегрузок- автоматическим выключателем; альтернативно также возможна сборка с Контактором и реле защиты от перегрузки)

с установленным защитным аппаратом (авт. выключатель/
предохранители), но не к другим компонентам фидера.
2) $I_{q}=50 \mathrm{kA} п р и 400 \mathrm{~B}$.

Устройства плавного пуска SIRIUS 3RW
 3RW30，3RW40 стандартного назначения

3RW30

Данные для выбора и заказа

3RW30 1.

3RW30 2.

3RW30 3.
среды 3 W $50{ }^{\circ}$
RW $50^{\circ}{ }^{1}{ }^{1)}$
Температура окружающей среды 3RW $50{ }^{\circ}$
Ном．параметры 3－ф．электродвигателей
Рабочий
ток I_{e}
$I_{\text {e }}$ Мощность при
рабочем напряжении $U_{\text {e }}$
200 B 230 B 460 B 575 B
л．с．л．с．л．с．л．с．

Номинальное рабочее напряжение $U_{e} 200$ ．．． 480 Bинтовые силовые клеммы и клеммы вспомогательных цепей

3，6	0，75	1，5	－－	3	0，5	0，5	1，5	－－	S00	－	3RW30 13－1BB $\square 4$	95，50	1	1 шт．	131
6，5	1，5	3	－－	4，8	1	1	3	－－	S00	－	3RW30 14－1BB $\square 4$	111，－	1	1 шт．	131
9	2，2	4	－－	7，8	2	2	5	－－	S00	－	3RW30 16－1BB $\square 4$	127，－	1	1 шт．	131
12，5	3	5，5	－－	11	3	3	7，5	－－	S00	－	3RW30 17－1BB $\square 4$	143，－	1	1 шт．	131
17，6	4	7，5	－－	17	3	3	10	－－	S00	－	3RW30 18－1BBロ4	164，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
3，6	0，75	1，5	－－	3	0，5	0，5	1，5	－－	S00	B	3RW30 13－2BBロ4	97，60	1	1 шт．	131
6，5	1，5	3	－－	4，8	1	1	3	－－	S00	B	3RW30 14－2BBロ4	113，－	1	1 шт．	131
9	2，2	4	－－	7，8	2	2	5	－－	S00	B	3RW30 16－2BBロ4	131，－	1	1 шт．	131
12，5	3	5，5	－－	11	3	3	7，5	－－	S00	B	3RW30 17－2BBロ4	146，－	1	1 шт．	131
17，6	4	7，5	－－	17	3	3	10	－－	S00	B	3RW30 18－2BBロ4	168，－	1	1 шт．	131
－Винтовые силовые клеммы и клеммы вспомогательных цепей															
25	5，5	11	－－	23	5	5	15	－－	So	－	3RW30 26－1BB $\square 4$	191，－	1	1 шт．	131
32	7，5	15	－－	29	7，5	7，5	20	－－	So	－	3RW30 27－1BB口4	223，－	1	1 шт．	131
38	11	18，5	－－	34	10	10	25	－－	S0	$>$	3RW30 28－1BBロ4	276，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
25	5，5	11	－－	23	5	5	15	－－	So	B	3RW30 26－2BBロ4	195，－	1	1 шт．	131
32	7，5	15	－－	29	7，5	7，5	20	－－	So	B	3RW30 27－2BB口4	227，－	1	1 шт．	131
38	11	18，5	－－	34	10	10	25	－－	So	B	3RW30 28－2BB $\square 4$	281，－	，	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
45	11	22	－－	42	10	15	30	－－	S2	－	3RW30 36－पBB $\square 4$	339，－	1	1 шт．	131
63	18，5	30	－－	58	15	20	40	－－	S2	－	3RW30 37－ロBB ${ }^{\text {a }}$	413，－	1	1 шт．	131
72	22	37	－－	62	20	20	40	－－	S2	－	3RW30 38－■BBロ4	488，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
80	22	45	－－	73	20	25	50	－－	S3	－	3RW30 46－■BB $\square 4$	562，－	1	1 шт．	131
106	30	55	－－	98	30	30	75	－－	S3	－	3RW30 47－ロBBロ4	626，－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Винтовые клеммы
－Пружинные клеммы（для типоразмеров S2 и S3）${ }^{3)}$
Номинальное питающее напряжение управления Us
－24B AC／DC
－ 110 ．．．230B AC／DC
Устройства плавного пуска для лёгких условий пуска
Номинальное рабочее напряжение $U_{e} 200 \ldots 400$ B
Номинальное питающее напряжение управления $U_{s} 24$ ．．．230B AC／DC

	0,55	$\mathbf{1 , 1}$	--	2,6	0,5	$\mathbf{0 , 5}$	--	--	22,5

－Винтовые клеммы
－Пружинные клеммы
1）Приведены параметры для отдельного монтажа．
2）Устройства плавного пуска с винтовыми клеммами：класс срока поставки $>$（предпочтительный тип）．
${ }^{\text {3）}}$ Для типоразмеров S 2 и $\mathrm{S3}$ ：клеммы главной цепи－только винтовые．
Примечание
Указанные мощности двигателей являются ориентировочными． Устройства плавного пуска должны выбираться по номинальному рабочему току соответствующего электродвигателя．

Электронные УПП SIRIUS 3RW30 рассчитаны на простые условия пуска．Параметры выбора и данные заказа определяются с учетом следующих граничных условий（также следует учитывать примечания на странице 4／6 ）：
－Максимальное время пуска： 3 с．
－Максимальный пусковой ток： 300% от тока двигателя I_{e}
－Максимальное количество пусков в час в 1／ч： 20

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

1) Краткая мультиязычная инструкция по эксплуатации может входить в объем поставки устройства плавного пуска. Инструкции, а так же руководство по эксплуатации, доступны для загрузки в формате PDF из сети Интернет на портале Service\&Support по адресу
www.siemens.de/industrial-controls/support --> Коммутационные аппараты --> Устройства плавного пуска и полупроводниковые коммутационные аппараты --> Устройства плавного пуска SIRIUS 3RW.

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

3RW30

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Дополнительная информация
Примеры применения УПП 3RW30 для нормальных условий пуска (Class 10)
Нормальные условия пуска, Class 10 (время разгона - до 20 с, пусковой ток - до $300 \% I_{\mathrm{n}}$ двигателя),

Применение	Ленточный транспортер	Роликовый транспортер	Компрессор	Небольшой вентилятор ${ }^{1)}$	Hacoc	Гидравлический насос

Параметры пуска

- Рампа напряжения

и ограничения тока

- Напряжение пуска
- Время пуска
\% Ue 70
10
60
50
$\begin{array}{ll}50 & 40 \\ 20 & \end{array}$
40
20
40
10
40

1) Момент инерции вентилятора $<10 x$ момента инерции двигателя

Примечание

Примеры настройки параметров устройств, приводимые в таблицах , служат исключительно для информации и не являются обязательными. Параметры настройки должны рассчитываться при проектировании фидера и оптимизироваться при вводе в эксплуатацию. Для более точного определения параметров можно использовать программное обеспечение Win-Soft Starter или обратиться в Technical Assistance.

Конфигурация

Электронные устройства плавного пуска электродвигателей 3RW30 предназначены только для лёгких условий запуска.
При более высоких требованиях или при повышенной частоте пусков следует выбирать более мощное устройство или устройство с более высоким классом срабатывания.
Для защиты электродвигателя от перегрузки необходимо дополнительно предусмотреть соответствующий защитный аппарат (реле защиты от перегрузки или автоматический выключатель). Для непосредственной защиты двигателя от перегрева необходимо дополнительно использовать реле термисторной защиты. Рекомендованные аппараты защиты фидеров УПП ЗRW30: см. стр. 4/11
Все элементы главной цепи (предохранители, коммутационные аппараты и реле защиты от перегрузки) подбираются и заказываются отдельно, исходя из условий прямого пуска и местных условий возможного возникновения коротких замыканий.
Необходимо учитывать максимальную частоту пусков в час, указанную в технических параметрах и руководстве.
В фидере между УПП SIRIUS 3RW и двигателем не должно быть ёмкостных элементов (например, устройств компенсации реактивной мощности). Кроме того, запрещается параллельная работа статических систем компенсации реактивной мощности, и динамических систем коррекции коэффициента мощности (Power Factor Correction) при разгоне и выбеге УПП, чтобы избежать сбоев в работе системы и/или УПП.

Примечание

При включении 3-фазных электродвигателей во всех схемах пуска (прямой пуск, пуск по схеме "звезда-треугольник", плавный пуск), наблюдаются провалы напряжения. Питающий трансформатор должен подбираться таким образом, чтобы провал напряжения при пуске двигателя оставался в допустимых пределах. При слишком малом запасе мощности трансформатора следует обеспечить подачу напряжения управления (раздельно от главного напряжения) от отдельной цепи, чтобы избежать возможного отключения УПП.

Принципиальная схема силовой силовой электроники

Система шунтирующих (байпасных) контактов интегрирована в УПП 3RW30 (кроме аппаратов 3RW3003 в корпусе 22.5 мм)

Диаграмма состояний

Руководство для SIRIUS 3RW30/40

Наряду со всей важной информацией о проектировании, вводе в эксплуатацию и сервисном обслуживании, руководство содержит предложения по построению схем, а также технические данные устройств.

Программа выбора и моделирования Win-Soft Starter

С помощью этой программы можно подбирать все УПП фирмы Siemens с учетом различных параметров сети, данных двигателя и нагрузки, условий пуска и многих других.

Программа Win-Soft Starter может быть загружена на сайте: www.siemens.de/sanftstarter --> Software
Дополнительную информацию об устройствах плавного пуска смотрите также в Интернете:
www.siemens.de/sanftstarter
Курс обучения УПП SIRIUS (SD-SIRIUSO)
Чтобы заказчик и его персонал при проектировании, вводе в эксплуатацию и техническом обслуживании владели актуальной информацией, фирма Siemens предлагает двухдневный учебный курс по электронным УПП SIRIUS.
Дополнительную информацию см. на нашем веб-сайте SITRAIN: www.siemens.de/sitrain--> краткое обозначение "SD-SIRIUSO"
Вопросы и заявки направляйте:

В Германии:

e-mail: info@sitrain.com
Тел.: +49 (1805) 235611
В России:
e-mail: cecp.ru@siemens.com
Тел: +7 (495) 737-1-737

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

3RW40

УПП управляет напряжением так, чтобы ток двигателя оставался постоянным. Этот процесс заканчивается после завершения разгона двигателя, а так же после срабатывания собственной защиты устройства или защиты двигателя от перегрузки. Благодаря этой функции, реальный процесс разгона двигателя может длиться дольше времени разгона, заданного в УПП.
Благодаря интегрированной защите двигателя от перегрузки по IEC 60947-4-2 отпадает необходимость установки дополнительного реле защиты двигателя от перегрузки. Номинальный рабочий ток двигателя и класс срабатывания (CLASS) настраиваются поворотными переключателями, расположенными на корпусе устройства. Поворотный переключатель класса срабатывания (10, 15 или 20) обеспечивает гибкую настройку времени срабатывания защиты электродвигателя по перегрузке. При необходимости встроенную защиту двигателя от перегрузки можно отключить (CLASS - в положении OFF), если защиту от перегрузки обеспечивает другой аппарат, например, система управления и защиты электродвигателя SIMOCODE pro с возможностью подключения к PROFIBUS.

Аппараты до до 55 кВт/ 400B AC предлагаются опционально в исполнении с функцией термисторной защиты двигателя. K таким устройства напрямую подключаются РТС типа А или датчики типа "Thermoclick". Наряду с термической перегрузкой двигателя, обрыв провода или короткое замыкание в цепи датчика также вызывают отключение УПП. Доступны различные возможности сброса срабатывания собственной защиты или защиты двигателя от перегрузки: вручную кнопкой Reset, автоматически или дистанционно кратковременным прерыванием подачи управляющего напряжения.

Новая серия устройств поддерживает метод управления Polarity Balancing (баланс полярности) для предотвращения возникновения составляющих постоянного тока в УПП с двухфазным управлением. У них в неуправляемой фазе протекает результирующий ток, получающийся вследствие наложения токов двух управляемых фаз. В результате во время пуска двигателя возникает несимметричное распределение трех фазных токов. Это явление не является критичным для большинства применений. Наряду с этой асимметрией, управление силовыми полупроводниковыми приборами также вызывает уже упомянутые составляющие постоянного тока, которые при начальных пусковых напряжениях менее 50 \% от номинального рабочего напряжения могут приводить к сильным шумам в двигателе при разгоне.
Метод управления УПП типа 3RW40 снижает воздействие этих составляющих постоянного тока в неуправляемой фазе и, тем самым, снижает тормозной момент, вызываемый их воздействием. УПП с двумя управляющими фазами обеспечивают плавный, пуск электродвигателей с равномерным увеличением числа оборотов, крутящего момента и тока. Это становится возможным благодаря непрерывному динамическому уравниванию и балансировке токовых полуволн разной полярности во время запуска двигателя. Поэтому метод и получил название Polarity Balancing. При этом акустические параметры такого процесса пуска практически приближаются к параметрам плавного пуска устройствами с трехфазным управлением.

Области применения

Электронные УПП SIRIUS 3RW40 предназначены для плавного пуска и останова стандартных асинхронных 3-фазных электродвигателей.
Благодаря инновационному двухфазному управлению во всех 3 фазах не только ограничивается ток на протяжении всего времени разгона, но и устраняются паразитные составляющие постоянного тока. Это обеспечивает не только плавный пуск электродвигателей до 250 кВт (при 400 В), но и снижает броски тока и провалы напряжения, характерные, например, для пускателей прямого пуска или схем пуска по схеме "звездатреугольник".

Примеры применения для различных нагрузок
См. "Таблица выбора устройств плавного пуска" на странице 4/6.

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Технические данные

Допустимое монтажное

- с дополнительным вентилятором (для 3RW40 2. ... 3RW40 4.)				
- без дополнительного вентилятора (для 3RW40 2. ... 3RW40 4.)				-- (Вентилятор встроен в устройства плавного пуска)
Монтаж ${ }^{1)}$ Отдельный монтаж		3RW40 2.	(1) $\geq 15 \mathrm{~mm}(\geq 0.59 \mathrm{in})$ (2) $\geq 40 \mathrm{~mm}(\geq 1.56 \mathrm{in})$ (3) $\geq 60 \mathrm{~mm}(\geq 2.36 \mathrm{in})$ 3RW40 3., 3RW40 4.	3RW40 5., 3RW40 7. (1) $\geq 5 \mathrm{~mm}(\geq 0.2 \mathrm{in})$ (2) $\geq 75 \mathrm{~mm}(\geq 3 \mathrm{in})$ (3) $\geq 100 \mathrm{~mm}(\geq 4 \mathrm{in})$
Допустимая высота установки над уровнем моря	M	(требуется снижение номинальных значений параметров (дерейтинг) от 1000 м., см. характеристику странице 4/7)		
Степень защиты IP 1) При отклонениях учитывать снижение номинальных значений параметров (см. Руководство по устройствам в главе "Проектирование").		1 P 20 для 3R	W40 2.; для всех осталь	
Тип		3RW40 2., 3RW40 3., 3RW40 4.		3RW40 5., 3RW40 7.
Управляю川ая өлектроника				
Номинальные значения Клеммы Номинальное питающее напряжение управления A1/A2 - Допуск Номинальная частота - Допуск	$\begin{aligned} & \text { B } \\ & \% \\ & \text { ГL } \\ & \% \end{aligned}$	$\begin{aligned} & \text { DC/AC } 24 \\ & \pm 20 \\ & 50 / 60 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \text { DC/AC } 110 \ldots 230 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & \text { AC } 115 \text { AC } 230 \\ & -15 /+10 \end{aligned}$

Тип		$\begin{aligned} & \text { 3RW40 2.-..B.4, } \\ & \text { 3RW40 3.-..B.4, } \\ & \text { 3RW40 4.-..B.4 } \end{aligned}$	3RW40 2.-..B.5, 3RW40 3.-..B.5, 3RW40 4.-..B. 5	3RW40 5.-.BB.4, 3RW40 7.-.BB. 4	3RW40 5.-.BB.5, 3RW40 7.-.BB. 5
СИловая өлектроника					
Номинальное рабочее напряжение Допуск	$\begin{aligned} & \text { AC B } \\ & \% \end{aligned}$	$\begin{aligned} & 200 \ldots 480 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & 200 \ldots 460 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & -15 /+10 \end{aligned}$
Максимальное обратное напряжение тиристора	AC B	1600		1400	1800
Номинальная частота Допуск	$\begin{aligned} & \text { Гц } \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & 50 / 60 \\ & \pm 10 \\ & \hline \end{aligned}$			
Непрерывный режим при $40{ }^{\circ} \mathrm{C}\left(\%\right.$ от $\left.I_{\mathrm{e}}\right)$	\%	115			
Минимальная нагрузка (\% от минимального регулируемого номинального тока двигателя I_{M})	\%	20 (минимум 2 A)			
Максимальная длина проводников между устройством плавного пуска и двигателем	M	300			

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

3RW40

Фидеры электродвигателей с устройствами плавного пуска
Тип координации фидеров электродвигателей с УПП зависит от требований конкретного применения.

Для соответствия типу координации 1 (ToC1) достаточно сборки без предохранителей (комбинация автоматический выключатель + УПП).

Если требуется соответствие типу координации 2 (ТоС2), то силовые полупроводники устройства плавного пуска должны защищаться соответствующими
рекомендованными SIEMENS быстродействующими предохранителями для защиты электронных компонентов.
$\left[\begin{array}{c}\text { Toc } \\ 1\end{array}\right]$ Тип координации "1" согласно IEC 60947-4-1: После короткого замыкания устройство выходит из строя и непригодно для дальнейшей эксплуатации (защита персонала и установки обеспечена).
$\left[\begin{array}{c}\text { Toc } \\ 2\end{array}\right]$ Тип координации "2" согласно IEC 60947-4-1: После короткого замыкания устройство пригодно для дальнейшей эксплуатации (защита персонала и установки обеспечена).

Понятие "Тип координации" относится только к сборке УПП в сочетании с соответствующим аппаратом защиты (авт. выключатель/ предохранители), но не к другим компонентам фидера.

Типы координации обозначены соответствующими символами в таблицах выбора рекомендованных аппаратов защиты для устройств плавного пуска.

Сборки без предохранителей

Устройства плавного пуска	Ном. раб. ток	Автоматический выключатель ${ }^{1)}$						
		$400 \mathrm{~B}+10$ \%	$400 \mathrm{~B}+10$ \%		Ном. раб. ток	575 B +10 \%		Ном. раб. ток
Q11		Q1	Q1	$I_{\text {q max }}$		Q1	$I_{\text {q max }}$	
Тип	A	Тип	Тип	кA	A	Тип	кA	A
Тип координации 1								
3RW40 24	12,5	3RV1 021-1KA10	3RV1 321-1KC10	55	16	--	--	--
3RW40 26	25	3RV1 021-4DA10	3RV1 321-4DC10	55	25	--	--	--
3RW40 27	32	3RV1 031-4EA10	3RV1 331-4EC10	55	32	--	--	--
3RW40 28	38	3RV1 031-4FA10	3RV1 331-4FC10	55	40	--	--	--
3RW40 36	45	3RV1 031-4GA10	3RV1 331-4GC10	20	45	--	--	--
3RW40 37	63	3RV1 041-4JA10	3RV1 341-4JC10	20	63	--	--	--
3RW40 38	72	3RV1 041-4KA10	3RV1 341-4KC10	20	75	--	--	--
3RW40 46	80	3RV1 041-4LA10	3RV1 341-4LC10	11	90	--	--	--
3RW40 47	106	3RV1 041-4MA10	3RV1 341-4MC10	11	100	--	--	--
3RW40 55	134	3VL3 720-2DC36		35	200	3VL3 720-1DC36	12	200
3RW40 56	162	3VL3 720-2DC36		35	200	3VL3 720-1DC36	12	200
3RW40 73	230	3VL4 731-2DC36		65	315	3VL5 731-3DC36	35	315
3RW40 74	280	3VL4 731-2DC36		65	315	3VL5 731-3DC36	35	315
3RW40 75	356	3VL4 740-2DC36		65	400	3VL5 740-3DC36	35	400
3RW40 76	432	3VL5 750-2DC36		65	500	3VL5 750-3DC36	35	500

1) При выборе устройств учитывайте ном. раб. ток двигателя. Автоматические выключатели 3RV13/ 3RV23 предназначены для защиты пусковых сборок от токов КЗ (без функции защиты двигателя от перегрузки). В этом случае защиту двигателя от перегрузки выполняют устройства плавного пуска 3RW40

Сборки с предохранителями (только защита линии)

| |
| :--- | :--- | :--- | :--- | :--- |

1) Тип координации "1" относится к сборке УПП в сочетании с соответствующими предохранителями, но не к другим компонентам установленным в фидере

Сборки с предохранителями STOR 3NE1 (защита линии и силовых полупроводников

1) Тип координации "2" относится к сборке УПП в сочетании с

соответствующими предохранителями, но не к другим компонентам
установленным в фидере

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

3RW40

Сборки с предохранителями SITOR 3NE3 (защита силовых полупроводников предохранителем, защита линий и защита от перегрузок автоматическим выключателем; также возможна сборка с контактором и реле защиты от перегрузки)

Соответствующие держатели предохранителей/ разъединители см. в каталоге LV 10.1 --> "Разъединители нагрузки" и в каталоге LV 10.1 --> "Предохранители для защиты полупроводников SITOR" или на www.siemens.de/sitor

1) Тип координации "2" относится к сборке УПП в сочетании с установленным защитным элементом (автоматический выключатель/предохранители), но не к другим компонентам, установленным в фидере.

Устройства плавного пуска SIRIUS 3RW 3RW30，3RW40 стандартного назначения

Данные для выбора заказа

SIRIUS 3RW40 для нормальных условий пуска（CLASS 10）

3RW40 2.

3RW40 3.

3RW40 4

Температура окружающей среды 3RW $40{ }^{\circ} \mathrm{C}^{1)}$				Температура окружающей среды 3RW $50{ }^{\circ} \mathrm{C}{ }^{1)}$					Типо－ размер	Кл． пост．	Нормальные условия пуска （CLASS 10）		ЕП (шт., к-т,M)	Кол－во уп．＊	Уп．
Номинальные параметры 3－ф электродвигателей				Номинальные параметры 3－ф электродвигателей											
Рабочий ток $I_{\text {e }}$	Мощность при рабочем напряжении U_{e}			Рабочий TOK $I_{\text {e }}$	Мощн рабоч	ть при напря	нии U								
	230 B	400 B	500 B		200 B	230 B	460 В	575 B			Заказной номер	Цена €			
A	kBT	kBT	kBT	A	л．c．	л．c．	л．c．	л．c．				за ЕП			
Номинальное рабочее напряжение Ue 200 ．．． 480 B ${ }^{2}$															
－Винтовые силовые клеммы и клеммы вспомогательных цепей															
12，5	3	5，5	－－	11	3	3	7，5	－－	So	\checkmark	3RW40 24－1BB $\square 4$	212，－	1	1 шт．	131
25	5，5	11	－－	23	5	5	15	－－	SO	－	3RW40 26－1BB $\square 4$	250，－	1	1 шт．	131
32	7，5	15	－－	29	7，5	7，5	20	－－	S0	－	3RW40 27－1BB $\square 4$	297，－	1	1 шт．	131
38	11	18，5	－－	34	10	10	25	－－	S0	－	3RW40 28－1BB $\square 4$	356，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	3	5，5	－－	11	3	3	7，5	－－	So	B	3RW40 24－2BB $\square 4$	217，－	1	1 шт．	131
25	5，5	11	－－	23	5	5	15	－－	SO	B	3RW40 26－2BB口4	255，－	1	1 шт．	131
32	7，5	15	－－	29	7，5	7，5	20	－－	SO	B	3RW40 27－2BB $\square 4$	303，－	1	1 шт．	131
38	11	18，5	－－	34	10	10	25	－－	S0	B	3RW40 28－2BB $\square 4$	363，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
45	11	22	－－	42	10	15	30	－－	S2	\checkmark	3RW40 36－■BB $\square 4$	425，－	1	1 шт．	131
63	18，5	30	－－	58	15	20	40	－－	S2	－	3RW40 37－口BBロ4	504，－	1	1 шт．	131
72	22	37	－－	62	20	20	40	－－	S2	\checkmark	3RW40 38－■BBD4	584，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
80	22	45	－－	73	20	25	50	－－	S3	－	3RW40 46－■BB $\square 4$	658，－	1	1 шт．	131
106	30	55	－－	98	30	30	75	－－	S3	\checkmark	3RW40 47－ロBBロ4	717，－	1	1 шт．	131

Повьוшенное номинальное рабочее напряжение Uе $400 \ldots 600$ в

12，5	－－	5，5	7，5	11	－－	－－	7，5	10	SO	B	3RW40 24－1BB $\square 5$	244，－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	SO	B	3RW40 26－1BB $\square 5$	287，－	1	1 шт．	131
32	－－	15	18，5	29	－－	－－	20	25	SO	B	3RW40 27－1BB $\square 5$	341，－	1	1 шт．	131
38	－－	18，5	22	34	－－	－－	25	30	S0	B	3RW40 28－1BB $\square 5$	408，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	－－	5，5	7，5	11	－－	－－	7，5	10	SO	B	3RW40 24－2BB $\square 5$	250，－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	SO	B	3RW40 26－2BB $\square 5$	293，－	1	1 шт．	131
32	－－	15	18，5	29	－－	－－	20	25	S0	B	3RW40 27－2BB $\square 5$	350，－	1	1 шт．	131
38	－－	18，5	22	34	－－	－－	25	30	S0	B	3RW40 28－2BB $\square 5$	417，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
45	－－	22	30	42	－－	－－	30	40	S2	B	3RW40 36－पВBロ5	488，－	1	1 шт．	131
63	－－	30	37	58	－－	－－	40	50	S2	B	3RW40 37－■BBロ5	579，－	1	1 шт．	131
72	－－	37	45	62	－－	－－	40	60	S2	B	3RW40 38－口ВBロ5	670，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
80	－－	45	55	73	－－	－－	50	60	S3	B	3RW40 46－पВBロ5	757，－	1	1 шт．	131
106	－－	55	75	98	－－	－－	75	75	S3	B	3RW40 47－ロBBロ5	823，－	1	1 шт．	131

Тип клемм вспомогательных цепей
В Винтовые клеммь
－Пружинные клеммы（S2 и S3）${ }^{3}$
Номинальное питающее напряжение управления U_{s}
24B AC／DC
110 230B AC／DC
1）Отдельный монтаж без опционального вентилятора охлаждения．
2）Устройства плавного пуска с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）．
3）Начиная с типоразмера S2 главные присоединения только с винтовыми клеммами．

Примечание

Указанные мощности двигателей－ориентировочные．
Устройства плавного пуска должны всегда выбираться по номинальному рабочему току электродвигателя．Устройства 3RW40 рассчитаны на нормальные условия пуска．

Устройства плавного пуска SIRIUS 3RW 3RW30，3RW40 стандартного назначения

3RW40

3RW40 2.

3RW40 3.

3RW40 4.

Повышенное номинальное рабочее напряжение $U_{e} 400$ ．．． 600 B
С функцией термисторной защиты электродвигателя
Номинальное питающее напряжение управления $U_{c} 24 B$ AC／DC
－Винтовые силовые клеммы и клеммы вспомогательных цепей

12，5	－－	5，5	7，5	11	－－	－－	7，5	10	S0	B	3RW40 24－1TB05	307，－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	S0	B	3RW40 26－1TB05	351，－	1	1 шт．	131
32	－－	15	18，5	29	－－	－－	20	25	S0	B	3RW40 27－1TB05	405，－	1	1 шт．	131
38	－－	18，5	22	34	－－	－－	25	30	SO	B	3RW40 28－1TB05	472，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	－－	5，5	7，5	11	－－	－－	7，5	10	SO	B	3RW40 24－2TB05	314，－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	S0	B	3RW40 26－2TB05	358，－	1	1 шт．	131
32	－－	15	18，5	29	－－	－－	20	25	S0	B	3RW40 27－2TB05	413，－	1	1 шт．	131
38	－－	18，5	22	34	－－	－－	25	30	SO	B	3RW40 28－2TB05	482，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
45	－－	22	30	42	－－	－－	30	40	S2	B	3RW40 36－口TB05	552，－	1	1 шт．	131
63	－－	30	37	58	－－	－－	40	50	S2	B	3RW40 37－口TB05	643，－	1	1 шт．	131
72	－－	37	45	62	－－	－－	40	60	S2	B	3RW40 38－口TB05	734，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
80	－－	45	55	｜73	－－	－－	50	60	S3	B	3RW40 46－口TB05	820，－	1	1 шт．	131
106	－－	55	75	98	－－	－－	75	75	S3	B	3RW40 47－口TB05	887，－	1	1 шт．	131
Тип клемм вспомогательных цепей															
－Вин －Пру	ные	ы ммы	$n S 3)^{3}$								$\begin{aligned} & 1 \\ & 2 \end{aligned}$				

－Пружинные клеммы（S2 и S3）${ }^{3}$
1）Отдельный монтаж без дополнительного вентилятора．
2）Устройства плавного пуска с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）
3）Начиная с типоразмера S2 главные присоединения только с винтовыми клеммами．

Примечание

Указанные мощности двигателей－ориентировочные．
Устройства плавного пуска должны всегда выбираться по номинальному рабочему току электродвигателя．Устройства 3RW40 рассчитаны на нормальные условия пуска．

Данные для выбора и заказа определены с учетом следующих граничных условий（учитывайте данные на странице 4／6 ）：
－Максимальное время пуска： 10 с．
－Максимальный пусковой ток $I_{\mathrm{e}}: 300 \%$ х тока двигателя
－Максимальное количество пусков в час，1／ч： 5 （повышение частоты запусков возможно при использовании опционального вентилятора охлаждения）
（повышение частоты запусков возможно при использовании опционального вентилятора охлаждения）

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Примечание

Указанные мощности электродвигателей - ориентировочные.
Устройства плавного пуска должны всегда выбираться по номинальному рабочему току электродвигателя. Устройства 3RW40 рассчитаны на нормальные условия пуска.

Данные для выбора и заказа определены с учетом следующих граничных условий (учитывайте данные на странице 4/6):

- Максимальное время пуска: 10 с.
- Максимальный пусковой ток $I_{\mathrm{e}}: 300 \%$ х тока двигателя
- Максимальное количество пусков в час, 1/ч: 5 (повышение частоты запусков возможно при использовании опционального вентилятора охлаждения)
При более высоких требованиях следует выбирать более мощное устройство. Подробные технические данные для корректного выбора УПП для конкретных применений см. в соответствующем руководстве. Рекомендуется использование программы выбора Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW 3RW30，3RW40 стандартного назначения

3RW40

SIRIUS 3RW40 для тяжелых условий пуска（CLASS 20）

Температура окружающей среды $3 R W 40{ }^{\circ} \mathrm{C}^{1)}$				Температура окружающей среды $3 \mathrm{RW} 50{ }^{\circ} \mathrm{C}{ }^{1)}$					Типо－ размер	Кл． пост．	Тяжелые условия пуска （CLASS 20）		$\left.\begin{array}{c} \mathrm{E}(\boldsymbol{\text { (шт., к-т }} \\ \text { м } \end{array}\right)$	Кол－во уп．＊	Уп．
Номинальные параметры 3 －ф электродвигателей				Номинальные параметры 3－ф электродвигателей											
Рабочий ток $I_{\text {e }}$	Мощность при рабочем напряжении U_{e}			Рабочий ток $I_{\text {e }}$	Мощно рабоч	сть при м напря	жении $U_{\text {e }}$								
	230 B	400 B	500 B		200 B	230 B	460 B	575 B			Заказной номер	Цена €			
A	kBt	кBT	kBT	A	л．c．	л．c．	л．c．	л．c．				за ЕП			
Номинальное рабочее напряжение $U_{e} 200 \ldots 480$ B 21															
－Винтовые силовые клеммы и клеммы вспомогательных цепей															
12，5	3	5，5	－－	11	3	3	7，5	－－	So	\checkmark	3RW40 26－1BB口4	250，－	1	1 шт．	131
25	5，5	11	－－	23	5	5	15	－－	So	－	3RW40 27－1BBロ4	297，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	3	5，5	－－	11	3	3	7，5	－－	So	B	3RW40 26－2BBロ4	255，－	1	1 шт．	131
25	5，5	11	－－	23	5	5	15	－－	So	B	3RW40 27－2BBロ4	303，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
32	7，5	15	－－	29	7，5	7，5	20	－－	S2	\checkmark	3RW40 36－■BBロ4	425，－	1	1 шт．	131
38	11	18，5	－－	34	10	10	25	－－	S2	－	3RW40 37－ロBBロ4	504，－	1	1 шт．	131
45	11	22	－－	42	10	15	30	－－	S2	－	3RW40 37－ロBB口4	504，－	1	1 шт．	131
63	18，5	30	－－	58	15	20	40	－－	S3	－	3RW40 47－ロBBロ4	717，－	1	1 шт．	131
72	22	37	－－	62	20	20	40	－－	S3	$\stackrel{\rightharpoonup}{ }$	3RW40 47－ロBB口4	717，－	1	1 шт．	131
Повышенное номинальное рабочее напряжение $U_{e} 400$ ．．． 600 В															
－Винтовые силовые клеммы и клеммы вспомогательных цепей															
12，5	－－	5，5	7，5	11	－－	－－	7，5	10	S0	B	3RW40 26－1BBロ5	287，－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	So	B	3RW40 27－1BBロ5	341，－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	－－	5，5	7，5	11	－－	－－	7，5	10	So	B	3RW40 26－2BB口5	293，－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	So	B	3RW40 27－2BBロ5	350，－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
32	－－	15	18，5	29	－－	－－	20	25	S2	B	3RW40 36－पBBロ5	488，－	1	1 шт．	131
38	－－	18，5	22	34	－－	－－	25	30	S2	B	3RW40 37－ロBBロ5	579，－	1	1 шт．	131
45	－－	22	30	42	－－	－－	30	40	S2	B	3RW40 37－ロBBロ5	579，－	1	1 шт．	131
63	－－	30	37	58	－－	－－	40	50	S3	B	3RW40 47－पBBD5	823，－	1	1 шт．	131
72	－－	37	45	62	－－	－－	40	60	S3	B	3RW40 47－पBBロ5	823，－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Винтовые клеммы
－Пружинные клеммы（S2 и S3）${ }^{3}$
Номинальное питающее напряжение управления \boldsymbol{U}_{s}
－24B AC／DC
－ 110 ．．．230B AC／DC
1）Отдельный монтаж без дополнительного вентилятора
2）Устройства плавного пуска с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）．
3）Главное присоединение：винтовые клеммы．

Примечание

Указанные мощности электродвигателей－ориентировочные
Параметры устройства плавного пуска должны всегда определяться по номинальному рабочему току двигателя
Электронные УПП 3RW40 рассчитаны на простые условия
пуска．Параметры выбора и данные заказа определены с
учетом следующих граничных условий（учитывайте данные на
странице 4／6 ）：
－Максимальное время пуска： 20 с．
－Максимальный пусковой ток $I_{\mathrm{e}}: 300 \%$ х тока двигателя
－Максимальное количество пусков в час，1／ч： 5 （повышение частоты запусков возможно при использовании опционального вентилятора）

При более высоких требованиях следует выбирать более мощное устройство．Подробные технические данные для корректного выбора УПП для конкретных применений см．в соответствующем руководстве．Рекомендуется использование программы выбора Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW30，3RW40 стандартного назначения

3RW40

3RW40 2.

3RW40 3.

3RW40 4.

Температура окружающей среды 3RW $40^{\circ} \mathrm{C}^{1)}$

Номинальные параметры 3－ф электродвигателей			
Рабочий TOK I_{e}	Мощность при рабочем напряжении $U_{\text {e }}$		
	230 B	400 B	500 B
A	kBT	кВт	kBT

Температура окружающей среды 3RW $50{ }^{\circ} \mathrm{C}^{1)}$					Типо－ размер	Кл． пост．	Тяжелые условия пуска （CLASS 20）		ЕП（шт．，к－т，		Уп．
Номинальные параметры 3－ф электродвигателей											
Рабочий ток $I_{\text {e }}$	Мощность при рабочем напряжении $U_{\text {e }}$										
	200 B	230 B	460 В	575 B			Заказной номер	Цена €			
A	л．с．	л．c．	л．с．	л．c．				за ЕП			

Номинальное рабочее напряжение $U_{e} 200 \ldots 480$ B 21
Номинальное питающее напряжение управления $U_{c} 24 B$ AC／DC
－Винтовые силовые клеммы и клеммы вспомогательных цепей

12，5	3	5，5	－－	11	3	3	7，5	－－	So	$\stackrel{\rightharpoonup}{*}$	3RW40 26－1TB04	313，－－	1	1 шт．	131
25	5，5	11	－－	23	5	5	15	－－	S0	－	3RW40 27－1TB04	361，－－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	3	5，5	－－	11	3	3	7，5	－－	So	B	3RW40 26－2TB04	320，－－	1	1 шт．	131
25	5，5	11	－－	23	5	5	15	－－	So	B	3RW40 27－2TB04	368，－－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
32	7，5	15	－－	29	7，5	7，5	20	－－	S2	－	3RW40 36－口TB04	488，－－	1	1 шт．	131
38	11	18，5	－－	34	10	10	25	－－	S2	－	3RW40 37－口TB04	567，－－	1	1 шт．	131
45	11	22	－－	42	10	15	30	－－	S2	－	3RW40 37－םTB04	567，－－	1	1 шт．	131
63	18，5	30	－－	58	15	20	40	－－	S3	－	3RW40 47－口TB04	780，－－	1	1 шт．	131
72	22	37	－－	62	20	20	40	－－	S3	∇	3RW40 47－םTB04	780，－－	1	1 шт．	131

Повышенное номинальное рабочее напряжение $U_{\text {e }} 400$ ．．． 600 B ，
С функцией термисторной защиты электродвигателя
Номинальное питающее напряжение управления $U_{c} 24 B$ AC／DC
－Винтовые силовые клеммы и клеммы вспомогательных цепей

12，5	－－	5，5	7，5	11	－－	－－	7，5	10	So	B	3RW40 26－1TB05	351，－－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	S0	B	3RW40 27－1TB05	405，－－	1	1 шт．	131
－Пружинные силовые клеммы и клеммы вспомогательных цепей															
12，5	－－	5，5	7，5	11	－－	－－	7，5	10	S0	B	3RW40 26－2TB05	358，－－	1	1 шт．	131
25	－－	11	15	23	－－	－－	15	20	S0	B	3RW40 27－2TB05	413，－－	1	1 шт．	131
－Винтовые силовые клеммы，клеммы вспомогательных цепей－на выбор															
32	－－	15	18，5	29	－－	－－	20	25	S2	B	3RW40 36－םTB05	552，－－	1	1 шт．	131
38	－－	18，5	22	34	－－	－－	25	30	S2	B	3RW40 37－口TB05	643，－－	1	1 шт．	131
45	－－	22	30	42	－－	－－	30	40	S2	B	3RW40 37－口TB05	643，－－	1	1 шт．	131
63	－－	30	37	58	－－	－－	40	50	S3	B	3RW40 47－口TB05	887，－－	1	1 шт．	131
72	－－	37	45	62	－－	－－	40	60	S3	B	3RW40 47－口TB05	887，－－	1	1 шт．	131
Тип клемм вспомогательных цепей															
－Вин －Пру	ые	$\begin{aligned} & \text { мы } \\ & \text { ммы } \end{aligned}$									$\begin{aligned} & 1 \\ & 2 \end{aligned}$				

－Пружинные клеммы ${ }^{3)}$
1）Отдельный монтаж без дополнительного вентилятора．
2）Устройства плавного пуска с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）．
3）Главное присоединение：винтовые клеммы．

Примечание

Указанные мощности электродвигателей－ориентировочные．
Параметры устройства плавного пуска должны всегда определяться по номинальному рабочему току двигателя．
Электронные УПП 3RW40 рассчитаны на нормальные условия
пуска．Данные для выбора и заказа определены с учетом
следующих граничных условий（учитывайте данные на
странице 4／6 ）：
－Максимальное время пуска： 20 с．
－Максимальный пусковой ток I_{e} ： 300% х тока двигателя
－Максимальное количество пусков в час，1／ч： 5 （повышение частоты запусков возможно при использовании опционального вентилятора）

При более высоких требованиях следует выбирать более мощное устройство．Подробные технические данные для корректного выбора УПП для конкретных применений см．в соответствующем руководстве．Рекомендуется использование программы выбора Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW
 3RW30，3RW40 стандартного назначения

3RW40

3RW40 7.

Температура окружающей среды 3RW $40^{\circ} \mathrm{C}^{1)}$				Температура окружающей среды 3RW $50^{\circ} \mathrm{C}{ }^{1)}$					Типо－ размер	Кл． пост．	Тяжелые условия пуска （CLASS 20）		ЕП（шт．，к－т， м）	Кол－во уп．＊	Уп．
Номинальные параметры 3－ф электродвигателей				Номинальные параметры 3－ф электродвигателей											
Рабочий ток I_{e}	Мощность при рабочем напряжении $U_{\text {e }}$			Рабочий ток I_{e}	Мощн рабоч	ть при напря	$\text { ении } U_{e}$								
	230 B	400 B	500 B		200 B	230 B	460 B	575 B			Заказной номер	Цена €			
A	kBT	kBT	kBT	A	л．с．	л．c．	л．c．	л．c．							
Номинальное рабочее напряжение $U_{e} 200 \ldots 460 \mathrm{~B}^{2)}$															
－Шинные главные присоединения															
80	22	45	－－	73	20	25	50	－－	S6	B	3RW40 55－■BB $\square 4$	760，－	1	1 шт．	131
106	30	55	－－	98	25	30	60	－－	S6	B	3RW40 55－■BB $\square 4$	760，－	1	1 шт．	131
134	37	75	－－	117	30	40	75	－－	S6	B	3RW40 56－■BB $\square 4$	944，－	1	1 шт．	131
162	45	90	－－	145	40	50	100	－－	S12	B	3RW40 73－■BB $\square 4$	1060，－	1	1 шт．	131
230	75	132	－－	205	60	75	150	－－	S12	B	3RW40 74－■BB $\square 4$	1190，－	1	1 шт．	131
280	90	160	－－	248	75	100	200	－－	S12	B	3RW40 75－पBB $\square 4$	1390，－	1	1 шт．	131
356	110	200	－－	315	100	125	250	－－	S12	B	3RW40 76－■BB $\square 4$	1830，－	1	1 шт．	131
Повышенное номинальное рабочее напряжение $U_{e} 400 \ldots 600$ B $^{\text {3）}}$															
－Шинные главные присоединения															
80	－－	45	55	73	－－	－－	50	60	S6	B	3RW40 55－■BB $\square 5$	874，－	1	1 шт．	131
106	－－	55	75	98	－－	－－	60	75	S6	B	3RW40 55－■BBロ5	874，－	1	1 шт．	131
134	－－	75	90	117	－－	－－	75	100	S6	B	3RW40 56－■BBロ5	1080，－	1	1 шт．	131
162	－－	90	110	145	－－	－－	100	150	S12	B	3RW40 73－■BB $\square 5$	1220，－	1	1 шт．	131
230	－－	132	160	205	－－	－－	150	200	S12	B	3RW40 74－ロBBロ5	1360，－	1	1 шт．	131
280	－－	160	200	248	－－	－－	200	250	S12	B	3RW40 75－■BB $\square 5$	1600，－	1	1 шт．	131
356	－－	200	250	315	－－	－－	250	300	S12	B	3RW40 76－■BB $\square 5$	2090，－	1	1 шт．	131

Тип клемм вспомогательных цепей ${ }^{4}$ ）
－Пружинные клеммы
－Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{5}$ ）
－AC 115 B（по запросу）
－AC 230 B

1）Отдельный монтаж．
2）Устройства плавного пуска с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）．
3）Устройства плавного пуска с винтовыми клеммами：класс срока поставки A ．
4）Главное присоединение：присоединение к шине．
5）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．В любом случае требуется соответствующее внешнее питающее напряжение．

Примечание

Указанные мощности электродвигателей－ориентировочные． Параметры устройства плавного пуска должны всегда определяться по номинальному рабочему току двигателя．
Электронные УПП 3RW40 рассчитаны на нормальные условия
пуска．Данные для выбора и заказа определены с учетом следующих граничных условий（учитывайте данные на странице 4／6 ）：
－Максимальное время пуска： 40 с
－Максимальный пусковой ток I_{e} ： 350% х тока двигателя
－Максимальное количество пусков в час，1／ч： 1

При более высоких требованиях следует выбирать более мощное устройство．Подробные технические данные для корректного выбора УПП для конкретных применений см．в соответствующем руководстве．Рекомендуется использование программы выбора Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

3RW40

1) Дистанционный сброс для устройств плавного пуска 3RW40 2. -

3RW40 4. уже интегрирован.

1) Краткая мультиязычная инструкция по эксплуатации может входить в объем поставки устройства плавного пуска. Инструкции, а так же руководство по эксплуатации, доступны для загрузки в формате PDF из сети Интернет на портале Service\&Support по адресу:
www.siemens.de/industrial-controls/support --> Коммутационные аппараты --> Устройства плавного пуска и полупроводниковые коммутационные аппараты --> Устройства плавного пуска SIRIUS 3RW.

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Запчасти

	Для устройства плавного пуска		Исполнение	Кл.	Заказной номер	Цена €	ЕП (шт.,	Кол-во	Уп.
	Тип	Типоразмер	Номинальное питающее напряжение управления U_{s}						
Вентилятор									
	Вентилятор								
	3RW40 5.-.BB3.	S6	AC 115 B	\checkmark	3RW49 36-8VX30	72,10	1	1 шт.	131
	3RW40 5.-.BB4.	S6	AC 230 B	\checkmark	3RW49 36-8VX40	72,10	1	1 шт.	131
	3RW40 7.-. BB3.	S12	AC 115 B	-	3RW49 47-8VX30	72,10	,	1 шт.	131
	3RW40 7.-. BB4.	S12	AC 230 B	\checkmark	3RW49 47-8VX40	72,10	1	1 шт.	131

Устройства плавного пуска SIRIUS 3RW
 3RW30, 3RW40 стандартного назначения

3RW40

Дополнительная информация
Примеры применения УПП для нормальных условий пуска (CLASS 10)

Нормальные условия пуска Class 10 (до 20 с., 350 \% x I_{n} двигателя),
Мощность устройства плавного пуска, в зависимости от конкретных условий, должна быть больше или равна мощности электродвигателя.

Применение		Ленточный транспортер	Роликовый транспортер	Компрессор	Небольшой вентилятор ${ }^{1)}$	Hacoc	Гидравлический насос
Параметры пуска							
- Рампа напряжения и ограничение тока							
- Пусковое напряжение	\%	70	60	50	40	40	40
- Время разгона	c	10	10	10	10		
- Уровень ограничения броска пускового тока		$5 \times I_{M}$	$5 \times I_{M}$	$4 \times I_{M}$	$4 \times I_{M}$	$4 \times I_{M}$	$4 \times I_{M}$
Время останова	c	5	5	0	0	10	0

1) Момент инерции вентилятора $<10 \times$ момента инерции двигателя.

Примеры применения УПП для тяжелых условий пуска (CLASS 20)

Тяжелые условия пуска Class 20 (до 40 с с $350 \% I_{\mathrm{n} \text { двигателя) }}$), Устройства плавного пуска должно иметь класс мощности больше, чем у двигателя.			
Применение		Мешалка	Центрифуга
Параметры пуска			
- Рампа напряжения и ограничение тока - Пусковое напряжение - Время разгона - Уровень ограничения броска пускового тока	\%	$\begin{aligned} & 40 \\ & 20 \\ & 4 \times I_{M} \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 4 \times I_{M} \end{aligned}$
Время останов		0	0

Примечание
В этих таблицах приведены примеры настраиваемых значений и параметров. Они служат исключительно для информации и не являются обязательными. Настраиваемые значения зависят от конкретного применения и должны оптимизироваться при вводе УПП в эксплуатацию.
Для точного определения параметров и более корректного подбора УПП параметры устройств необходимо проверить в программе Win-Soft Starter или с помощью Technical Assistance.

Устройства плавного пуска SIRIUS 3RW 3RW30, 3RW40 стандартного назначения

Проектирование

Электронные устройства плавного пуска SIRIUS 3RW40 рассчитаны на нормальные условия пуска. При более высоких требованиях или при повышенной частоте запусков следует выбирать более мощные устройства. Для точного определения параметров устройств необходимо использовать программу выбора и моделирования Win-Soft Starter.
Защита электродвигателя от перегрузки обеспечивается встроенным в УПП 3TW40 реле перегрузки. Дополнительного реле перегрузки в данном случае не требуется. Для более полной защиты электродвигателей необходимо применять исполнение УПП с функцией термисторной защиты. Это актуально как для плавного запуска двигателя, так и для плавного останова, так как во время останова возникает дополнительная токовая нагрузка по сравнению со свободным выбегом.
При частых запусках в режиме S4 рекомендуется использование датчики температуры типа PTC. Другие варианты устройств с интегрированной функцией термисторной защиты двигателя, например, система SIMOCODE pro, а так же отдельные реле термисторной защиты типа 3RN можно найти в главе 8 каталога "IC10 2011" (Аппараты контроля и управления).
Между УПП SIRIUS 3RW и двигателем не должно быть ёмкостных элементов (например, систем компенсации реактивной мощности). Кроме того, запрещается одновременное использование как статических систем компенсации реактивной мощности, так и динамических системах регулирования коэффициента мощности (Power Factor Correction) при разгоне и выбеге двигателей при помощи УПП, чтобы избежать сбоев в работе системы и/или устройства плавного пуска.
Все элементы главной цепи (предохранители/ защитные аппараты, коммутационные аппараты) подбираются и заказываются отдельно, исходя из условий прямого пуска и местных условий возникновения коротких замыканий.
При выборе устройств плавного пуска необходимо учитывать максимальную частоту коммутации в час, указанную в технических данных.

Примечание

При включении 3-фазных электродвигателей во всех схемах пуска (прямой пуск, пуск по схеме "звезда-треугольник", плавный пуск), как правило, наблюдаются провалы напряжения. Питающий трансформатор должен принципиально подбираться таким образом, чтобы провал напряжения при пуске двигателя оставался в допустимых пределах. При слишком малом запасе мощности трансформатора следует обеспечить подачу напряжения управления (независимо от главного напряжения) от отдельной цепи, чтобы избежать возможного отключения УПП.

Принципиальная схема элементов силовой электроники

Система шунтирующих (байпасных) контактов, а так же электронное реле защиты электродвигателя от перегрузки интегрированы во все УПП 3RW40 и не должны заказываться отдельно.

Диаграмма состояний

Руководство для SIRIUS 3RW30/40

Наряду со всей важной информацией о проектировании, вводе в эксплуатацию и сервисе, руководство по эксплуатации содержит предложения по построению схем, а также технические данные всех устройств серий 3RW30/40
Программа выбора и моделирования Win-Soft Starter
С помощью этой программы можно подбирать УПП фирмы Siemens с учетом различных параметров, таких как условия сети, данные двигателя и нагрузки, специальные требования конкретных условий применения и многое другое.
Программа является действенным вспомогательным средством, избавляющим от длительных и сложных ручных расчетов для выбора требуемого для конкретного применения УПП. Программа Win-Soft Starter может быть загружена с интернет-сайта:
www.siemens.de/sanftstarter --> Software
Дополнительную информацию об устройствах плавного пуска смотрите также в сети Интернет:
www.siemens.de/sanftstarter
Курс обучения "Устройства плавного пуска SIRIUS" ("SD-SIRIUSO")

Чтобы заказчик при проектировании и персонал при вводе в эксплуатацию и техническом обслуживании УПП владели актуальной информацией, фирма Siemens предлагает двухдневный учебный курс по электронным УПП SIRIUS.
Дополнительную информацию см. на нашем веб-сайте SITRAIN:
www.siemens.de/sitrain
--> выбирать по краткому обозначению "SD-SIRIUSO"

Вопросы и заявки направляйте в сервисную службу SITRAIN:

В Германии:

Тел.: ++49 (1805) 235611
Эл. почта: info@sitrain.com
В России:
Тел.: +7 (495) 737-1-737
Эл. почта: сеср.ru@siemens.com

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

O6зор

Устройства плавного пуска SIRIUS 3RW44 с расширенными функциями предназначены для плавного пуска и останова стандартных асинхронных 3-фазных электродвигателей мощностью до 710 кВт (при 400 В) при стандартном подключении и до 1200 кВт (при 400 В) при подключении по схеме "внутри треугольника".
Устройства плавного пуска 3RW44 имеют компактный корпус и занимают намного меньше места в электрошкафу по сравнению со сборками по схеме "звезда-треугольник. Если требуется только плавный пуск и останов электродвигателя, и не требуется регулирование частоты вращения двигателя после выхода на номинальные обороты, УПП SIRIUS 3RW44 могут служить альтернативой частотным преобразователям. Новый принцип регулирования крутящего момента и регулируемое ограничение пускового тока обеспечивают почти повсеместное использование УПП этой линейки. Они обеспечивают снижение бросков крутящего момента и тока при пуске и останове двигателя. УПП SIRIUS 3RW44 можно подключать 2 способами: стандартное подключение (в линию) или подключение по схеме "внутри треугольника".

Интегрированные в УПП байпасные контакты шунтируют тиристоры после завершения разгона двигателя. Благодаря этому в номинальном режиме работы электродвигателя существенно уменьшаются тепловые потери на нагрев силовых полупроводников УПП, а так же их преждевременный износ.

На лицевой панели 3RW44 размещены жидкокристаллический дисплей и 4 кнопки, с помощью которых осуществляется параметрирование устройства. Оптимальные параметры разгона и останова двигателя задаются всего несколькими операциями. Язык меню устройства (в т.ч. русский) выбирается перед параметрированием. K параметрированию должен допускаться только квалифицированный персонал.
Стандарты и Нормы

- IEC 60947-4-2/ ГОСТ P 50030.4.2.
- UL/CSA

Функциональность
Удобный пользовательский интерфейс, всего 4 кнопки для параметрирования и многострочный графический дисплей с подсветкой обеспечивают простой и быстрый ввод 3RW44 в эксплуатацию. В процессе работы при поданном напряжении управления на дисплее отображаются эксплуатационные и измеряемые значения, а также сообщения о предупреждениях или неисправностях. Внешняя опциональная панель индикации и управления может быть подключена к УПП соединительным кабелем, и текущие сообщения могут считываться непосредственно на дверце электрошкафа.
УПП SIRIUS 3RW44 имеют собственную защиту от перегрева тиристоров. Она предупреждает термическую перегрузку силовых полупроводников устройства, например, из-за недопустимого режима процесса разгона электродвигателя.

Отпадают затраты на приобретение и монтаж дополнительного реле защиты двигателя от перегрузки, так как 3RW44 выполняют и эту функцию. Кроме того, для оптимизации условий пуска в каждом конкретном случае, 3RW44 имеют регулируемый класс срабатывания. Интегрированная функция термисторной защиты двигателя дополнительно защищает электродвигатель от перегрева, например, если забились решётки охлаждения.

Рекомендованные аппараты защиты УПП
Силовые полупроводники устройств плавного пуска 3RW необходимо защищать от воздействия токов короткого замыкания внешними аппаратами защиты
Для надёжной полной защиты тиристоров устройств (соответствие типу координации 2) рекомендуется применять предохранители для защиты полупроводниковых элементов типа SITOR (см. стр. 4/39).

При необходимости УПП SIRIUS 3RW44 могут дооснащаться опциональными модулями для подключения к PROFIBUS DP. Благодаря опции возможности коммуникации и программируемым входам и выходам устройства интегрируются в вышестоящие системы автоматизации

Основные характеристики

- Интегрированная система шунтирующих (байпасных) контактов для минимизации потерь мощности
- Многочисленные возможности настройки параметров пуска Пусковое напряжение, время разгона /останова, пусковой момент и многое другое в трех отдельных наборах параметров
- Плавный пуск с импульсом отрыва, регулирование крутящего момента или рампа напряжения, регулируемое ограничение крутящего момента или тока в зависимости от типа нагрузки
- "Ползучая скорость" в обоих направлениях с пониженным моментом
- Распознавание окончания процесса пуска
- Возможность подключения по схеме "внутри треугольника"
- Выбор различных видов останова: с регулированием крутящего момента и останов насоса, торможение постоянным током, комбинированное, свободный выбег
- Электронная защита электродвигателя от перегрузки и собственная защита устройства
- Термисторная защита двигателя
- Кнопки и многострочный графический дисплей с фоновой подсветкой для параметрирования
- Интерфейс для подключения ПК и локальной настройки параметров, а также управления и наблюдения
- Индикация рабочих состояний и сообщения о неисправностях
- Подключение к PROFIBUS с помощью дополнительного опционального модуля PROFIBUS DP
- Внешняя панель индикации и управления
- Номинальное рабочее напряжение от 200 до 690 В, 50/ 60 Гц
- Температура окружающей среды от $0^{\circ} \mathrm{C}$ до $60^{\circ} \mathrm{C}$ (начиная с $40^{\circ} \mathrm{C}$ требуется снижение номинальных значений параметров - дерейтинг)
Программа параметрирования Soft Starter ES ${ }^{1)}$
Программа Soft Starter ES предназначена для
параметрирования, контроля и сервисной диагностики УПП SIRIUS 3RW44

Библиотека модулей устройств плавного пуска SIRIUS 3RW44 для SIMATIC PCS 71)
Библиотека PCS 7 модулей УПП SIRIUS 3RW44 обеспечивает простую и удобную привязку этих устройств в систему управления производственным процессом SIMATIC PCS 7.

1) См. главу 12 каталога IC10_2011 ("Параметрирование, проектирование и визуализация для SIRIUS").

Область применения

Электронные устройства плавного пуска SIRIUS 3RW44 предназначены для плавного пуска с контролируемым моментом и останова стандартных асинхронных 3-фазных электродвигателей.

3RW44 могут применяться в большинстве промышленных применений, как для нормальных условий (CLASS 10), так и для особо тяжёлых условий пуска (CLASS30).
Чтобы избежать ложных срабатываний защиты необходимо выбирать устройства, рассчитанные на соответствующий класс срабатывания.

Рекомендации при выборе устройств плавного пуска
См. "Таблица выбора устройств плавного пуска"
на странице 4/6.

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Технические данные

Тип		3RW44 2.	3RW44 3.	3RW44 4.	3RW44 5.	3RW44 6.
Механические параметры и окружающая среда						
Габаритные размеры (ШхВхГ) - Винтовые клеммы - Пружинные клеммы ${ }^{1)}$	$\begin{aligned} & \text { MM } \\ & \text { MM } \end{aligned}$	$\begin{aligned} & 170 \times 184 \times 270 \\ & 170 \times 184 \times 270 \end{aligned}$	$\begin{aligned} & 170 \times 198 \times 270 \\ & 170 \times 198 \times 270 \end{aligned}$	$\begin{aligned} & 210 \times 230 \times 298 \\ & 210 \times 230 \times 298 \end{aligned}$	$\begin{aligned} & 510 \times 638,5 \times 290 \\ & 510 \times 638,5 \times 290 \end{aligned}$	$\begin{aligned} & 576 \times 667 \times 290 \\ & 576 \times 667 \times 290 \end{aligned}$
Допустимая температура окружающей среды						
Вес	Kг	6,5	7,9	11,5	50	78
Допустимое монтажное положение						
Монтаж		Независимая установка				
Допустимая высота установки	M	5000 (требуется снижение номинальных значений параметров (дерейтинг) начиная с 1000; см. характеристику на странице 4/7)				
Степень защиты IP		IP00				

Тип			3RW44 ..-.BC3.	3RW44 ..-. BC4.
Управляющая электроника				
Ном. параметры Номинальное питающее напряжение управления - Допуск	A1/A2/PE	$\begin{aligned} & \text { B } \\ & \% \end{aligned}$	$\begin{aligned} & \text { AC } 115 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & \text { AC } 230 \\ & -15 /+10 \end{aligned}$
Номинальная частота - Допуск		$\begin{aligned} & \text { 「ц } \\ & \% \end{aligned}$	$\begin{aligned} & 50 \ldots 60 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & 50 \ldots 60 \\ & \pm 10 \end{aligned}$

Тип		3RW44 ..-. BC. 4	3RW44 ..-.BC. 5	3RW44 ..-.BC. 6
Силовая электроника				
Номинальное рабочее напряжение для стандартного подключения Допуск	AC B \%	$\begin{aligned} & 200 \ldots 460 \\ & -15 /+10 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \ldots 600 \\ & -15 /+10 \\ & \hline \end{aligned}$	$\begin{aligned} & 400 \ldots 690 \\ & -15 /+10 \\ & \hline \end{aligned}$
Максимальное обратное напряжение (тиристоры)	AC B	1400	1800	1800
Номинальное рабочее напряжение для подключения по схеме "внутри треугольника" Допуск	AC B \%	$\begin{aligned} & 200 \ldots 460 \\ & -15 /+10 \end{aligned}$	$\begin{aligned} & \hline 400 \ldots 600 \\ & -15 /+10 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 400 \ldots 600 \\ & -15 /+10 \\ & \hline \end{aligned}$
Номинальная частота Допуск	$\begin{aligned} & \text { Гц } \\ & \% \end{aligned}$	$\begin{aligned} & 50 \ldots 60 \\ & \pm 10 \end{aligned}$		
Непрерывный режим при $40{ }^{\circ} \mathrm{C}$ (\% от I_{e})	\%	115		
Минимальная нагрузка (\% от установленного тока двигателя I_{M})	\%	8		
Максимальная длина кабеля между устройством плавного пуска и двигателем	M	$500^{2)}$		

1) Пружинные клеммы в устройствах плавного пуска 3RW44 доступны только для вспомогательных цепеи.
2) При проектировании необходимо соблюдать рекомендованные сечения кабелей, а так же учитывать падение напряжения и контролировать напряжение на участке в непосредственной близости к двигателю/ на клеммах двигателя. При необходимости нужно выбрать УПП с увеличенными значениями номинального рабочего напряжения и/ или тока.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Фидеры электродвигателей с устройствами плавного пуска
Тип координации для фидеров электродвигателей с устройствами плавного пуска зависит от требований для каждого отдельного применения

Если достаточен тип координации 1, возможна эксплуатация фидера без предохранителей (комбинация автоматический выключатель + УПП).

Если требуется соответствие типу координации 2, то для защиты тиристоров УПП должны применяться быстродействующие предохранители для защиты электронных компонентов типа SITOR.

Тип координации "1" согласно IEC 60947-4-1:
$\left[\begin{array}{c}\text { Toc } \\ 1\end{array}\right]$ После короткого замыкания устройство выходит из строя и непригодно для дальнейшей эксплуатации (защита персонала и установок обеспечена).

Тип координации "2" согласно IEC 60947-4-1:
$\left[\begin{array}{c}\text { ToC } \\ 2\end{array}\right]$ После короткого замыкания устройство пригодно для дальнейшей эксплуатации (защита персонала и установок обеспечена).

Тип координации относится только к сборке УПП с установленным защитным элементом (автоматический выключатель/предохранители), но не к другим компонентам, установленным в фидере электродвигателя.

Тип координации обозначен соответствующим символом в таблицах выбора аппаратов защиты.

Стандартное подключение УПП
фидеры без предохранителей

Устройство плавного пуска	Номинальный ток	Автоматический выключатель ${ }^{1)}$	
		440 B +10 \%	Номинальный ток
$\begin{aligned} & \text { Q11 } \\ & \text { Тип } \end{aligned}$	A		A
3RW44 22	29	3RV10 42-4HA10	50
3RW44 23	36	3RV10 42-4JA10	63
3RW44 24	47	3RV10 42-4KA10	75
3RW44 25	57	3RV10 42-4LA10	90
3RW44 26	77	3RV10 42-4MA10	100
3RW44 27	93	3RV10 42-4MA10	100
3RW44 34	113	3VL17 16-2DD36	160
3RW44 35	134	3VL17 16-2DD36	160
3RW44 36	162	3VL37 25-2DC36	250
3RW44 43	203	3VL47 31-3DC36	315
3RW44 44	250	3VL47 31-3DC36	315
3RW44 45	313	3VL47 40-3DC36	400
3RW44 46	356	3VL47 40-3DC36	400
3RW44 47	432	3VL57 50-3DC36	500
3RW44 53	551	3VL67 80-3AB36	800
3RW44 54	615	3VL67 80-3AB36	800
3RW44 55	693	3VL67 80-3AB36	800
3RW44 56	780	$3 \mathrm{VL77}$ 10-3AB36	1000
3RW44 57	880	3VL77 10-3AB36	1000
3RW44 58	970	3VL77 12-3AB36	1250
3RW44 65	1076	3VL77 12-3AB36	1250
3RW44 66	1214	3VL77 12-3AB36	1250

1) При выборе устройств учитывайте номинальный рабочий ток электродвигателя

Стандартное подключение УПП
Фидеры с предохранителями (только защита линий)

Устройство плавного пуска		Предохранители для защиты линий, макс.			Сетевой контактор до 400 В	Тормозн	$o p^{1) 2)}$
$\begin{array}{lr} & \begin{array}{c} \text { ToC } \\ 1 \\ \hline \end{array} \\ \text { Q11 } \\ \text { Tип } \end{array}$	Номинальный ток A	$\begin{aligned} & 690 \text { B +5 \% } \\ & \text { F1 } \\ & \text { Tип } \end{aligned}$	Номинальный ток A	Типоразмер	(опциональный) Q21 Тип	(примеры в руковод Q91 Тип	лючения см П 3RW44) Q92 Тип
Тип координации $1^{3)}: I_{q}=65 \mathrm{kA}$							
3RW44 22 3RW44 23 3RW44 24	$\begin{aligned} & 29 \\ & 36 \\ & 47 \end{aligned}$	3NA3 820-6 3NA3 822-6 3NA3 824-6	$\begin{aligned} & 50 \\ & 63 \\ & 80 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$	3RT10 34 3RT10 35 3RT10 36	3RT15 26 3RT15 26 3RT15 35	
$\begin{aligned} & \text { 3RW44 } 25 \\ & \text { 3RW44 } 26 \\ & \text { 3RW44 } 27 \end{aligned}$	$\begin{aligned} & 57 \\ & 77 \\ & 93 \end{aligned}$	3NA3 830-6 3NA3 132-6 3NA3 136-6	$\begin{aligned} & 100 \\ & 125 \\ & 160 \end{aligned}$	$\begin{aligned} & 00 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 44 \\ & \text { 3RT10 } 45 \\ & \text { 3RT10 } 46 \end{aligned}$	3RT15 35 3RT10 24 3RT10 25	3RT10 35 3RT10 36
3RW44 34 3RW44 35 3RW44 36	$\begin{aligned} & 113 \\ & 134 \\ & 162 \end{aligned}$	3NA3 244-6 3NA3 244-6 3NA3 365-6	$\begin{aligned} & 250 \\ & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \end{aligned}$	3RT10 54 3RT10 55 3RT10 56	3RT10 34 3RT10 36 3RT10 44	3RT10 44 3RT10 45 3RT10 45
3RW44 43 3RW44 44 3RW44 45	$\begin{aligned} & 203 \\ & 250 \\ & 313 \end{aligned}$	$\begin{aligned} & 2 \times \text { 3NA3 } 354-6 \\ & 2 \times 3 N A 3 ~ 354-6 \\ & 2 \times \text { 3NA3 } 365-6 \end{aligned}$	$\begin{aligned} & 2 \times 355 \\ & 2 \times 355 \\ & 2 \times 500 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	3RT10 64 3RT10 65 3RT10 75	3RT10 44 3RT10 44 3RT10 54	3RT10 54 3RT10 55 3RT10 56
3RW44 46 3RW44 47	$\begin{aligned} & 356 \\ & 432 \end{aligned}$	$\begin{aligned} & 2 \times 3 N A 3 \text { 365-6 } \\ & 2 \times 3 N A 3 \text { 365-6 } \end{aligned}$	$\begin{array}{r} 2 \times 500 \\ 2 \times 500 \end{array}$	3 3	$\begin{aligned} & \text { 3RT10 } 75 \\ & \text { 3RT10 } 76 \end{aligned}$	3RT10 54 3RT10 55	3RT10 56 3RT10 64
3RW44 53 3RW44 54 3RW44 55	$\begin{aligned} & 551 \\ & 615 \\ & 693 \end{aligned}$	$\begin{aligned} & 2 \times \text { 3NA3 } 365-6 \\ & 2 \times 3 N A 3 ~ 365-6 \\ & 2 \times 3 N A 3 ~ 365-6 \end{aligned}$	$\begin{aligned} & 2 \times 500 \\ & 2 \times 500 \\ & 2 \times 500 \end{aligned}$	3 3 3	3TF68 3TF68 3TF69	3RT10 64 3RT10 64 3RT10 65	3RT10 66 3RT10 75 3RT10 75
$\begin{aligned} & \text { 3RW44 } 56 \\ & \text { 3RW44 } 57 \\ & \text { 3RW44 } 58 \end{aligned}$	$\begin{aligned} & 780 \\ & 880 \\ & 970 \end{aligned}$	$\begin{aligned} & 2 \times 3 N A 3 \\ & 2 \times 5-6 \\ & 3 \times 3 N A 3365-6 \\ & 3 \times 365-6 \end{aligned}$	$\begin{aligned} & 2 \times 500 \\ & 2 \times 500 \\ & 3 \times 500 \end{aligned}$	3 3 3	3TF69	3RT10 65 3RT10 75 3RT10 75	$\begin{aligned} & \text { 3RT10 } 75 \\ & \text { 3RT10 } 76 \\ & \text { 3RT10 } 76 \end{aligned}$
3RW44 65 3RW44 66	$\begin{aligned} & 1076 \\ & 1214 \end{aligned}$	$\begin{aligned} & 3 \times 3 N A 3 ~ 365-6 \\ & 3 \times 3 N A 3 ~ 365-6 \end{aligned}$	$\begin{aligned} & 3 \times 500 \\ & 3 \times 500 \end{aligned}$	3 3		$\begin{aligned} & \hline \text { 3RT10 } 75 \\ & \text { 3RT10 } 76 \end{aligned}$	3TF68 3TF68

1) Если выбирается функция "торможение инжекцией постоянного тока", то требуется установка дополнительного тормозного контактора (тип контактора см. в таблице). Если выбирается функция "комбинированное торможение", то тормозной контактор не
требуется. Для применений с большим моментом инерции
($J_{\text {нагрузки }}>J_{\text {двигателя }}$) рекомендуется выбирать функцию "торможение инжекцией постоянного тока"
2) Дополнительное вспомогательное реле (K4)

ZX:RT4A4T30 (для устройств плавного пуска 3RW44 с номинальным питающим напряжением управления AC 230 B)
ZX:RT4A4S15 (для устройств плавного пуска 3RW44 с номинальным питающим напряжением управления AC 115 B).
3) Тип координации "1" относится только к сборке УПП с установленным защитным элементом (автоматический выключатель/ предохранители), но не к другим компонентам, установленным в фидере.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Стандартное подключение УПП

Фидеры с полнодиапазонными предохранителями SITOR 3NE (защита линий и силовых полупроводников)

Соответствующие держатели для предохранителей см. в каталоге LV 10.1 --> "Разъединители нагрузки" и в каталоге LV 10.1 --> "Системы с предохранителями" --> "Предохранители для защиты полупроводников типа SITOR" или на сайте www.siemens.de/sitor

Устройство плавного пуска Q11 Тип	Номинальный TOK	Полнодиапазонные предохранители				Сетевой контактор до 400 B (опционально)	Тормозной контактор ${ }^{1) 2}$	
			Номинальный ток	Напряжение	Типоразмер		(примеры в руководс плавного	ключения см. стройствам N44)
		F'1 Тип	A	B		$\begin{aligned} & \text { Q21 } \\ & \text { Тип } \end{aligned}$	$\begin{aligned} & \text { Q91 } \\ & \text { Тип } \end{aligned}$	$\begin{aligned} & \text { Q92 } \\ & \text { Тип } \end{aligned}$
Тип координации $2^{3)}: I_{q}=65 \mathrm{kA}$								
3RW44 22	29	3NE1 020-2	80	$690+5 \%$	00	3RT10 34	3RT15 26	--
3RW44 23	36	3NE1 020-2	80	$690+5 \%$	00	3RT10 35	3RT15 26	--
3RW44 24	47	3NE1 021-2	100	$690+5 \%$	00	3RT10 36	3RT15 35	--
3RW44 25	57	3NE1 022-2	125	$690+5$ \%	00	3RT10 44	3RT15 35	--
3RW44 26	77	3NE1 022-2	125	$690+5 \%$	00	3RT10 45	3RT10 24	3RT10 35
3RW44 27	93	3NE1 224-2	160	$690+5$ \%	1	3RT10 46	3RT10 25	3RT10 36
3RW44 34	113	3NE1 225-2	200	$690+5$ \%	1	3RT10 54	3RT10 34	3RT10 44
3RW44 35	134	3NE1 227-2	250	$690+5 \%$	1	3RT10 55	3RT10 36	3RT10 45
3RW44 36	162	3NE1 227-2	250	$690+5$ \%	1	3RT10 56	3RT10 44	3RT10 45
3RW44 43	203	3NE1 230-2	315	$600+10 \%$	1	3RT10 64	3RT10 44	3RT10 54
3RW44 44	250	3NE1 331-2	350	$460+10 \%$	2	3RT10 65	3RT10 44	3RT10 55
3RW44 45	313	3NE1 333-2	450	$690+5 \%$	2	3RT10 75	3RT10 54	3RT10 56
3RW44 46	356	3NE1 334-2	500	$690+5$ \%	2	3RT10 75	3RT10 54	3RT10 56
3RW44 47	432	3NE1 435-2	560	$690+5$ \%	3	3RT10 76	3RT10 55	3RT10 64
3RW44 53	551	2×3 NE1 334-2	500	$690+10 \%$	2	3TF68	3RT10 64	3RT10 66
3RW44 54	615	$2 \times 3 N E 1334-2$	500	$690+10 \%$	2	3 TF68	3RT10 64	3RT10 75
3RW44 55	693	$2 \times 3 N E 1334-2$	500	$690+10 \%$	2	3TF69	3RT10 65	3RT10 75
3RW44 56	780	2×3 NE1 435-2	560	$690+10 \%$	3	3TF69	3RT10 65	3RT10 75
3RW44 57	880	$2 \times 3 N E 1435-2$	560	$690+10 \%$	3		3RT10 75	3RT10 76
3RW44 58	970	$2 \times 3 N E 1435-2$	560	$690+10 \%$	3		3RT10 75	3RT10 76
3RW44 65	1076	3×3 NE1 334-2	500	$690+10 \%$	2		3RT10 75	3TF68
3RW44 66	1214	$3 \times 3 N E 1435-2$	560	$690+10 \%$	3		3RT10 76	3TF68

1) Если выбирается функция "торможение инжекцией постоянного тока", то требуется установка дополнительного тормозного контактора (тип контактора см. в таблице). Если выбирается функция "комбинированное торможение", то тормозной контактор не требуется. Для применений с большим моментом инерции
($J_{\text {нагрузки }}>J_{\text {двигателя }}$) рекомендуется выбирать функцию "торможение инжекцией постоянного тока
2) Дополнительное вспомогательное реле (K4)

LZX:RT4A4T30 (для устройств плавного пуска 3RW44 с номинальным питающим напряжением управления AC 230 B),
ZX:RT4A4S15 (для устройств плавного пуска 3RW44 с номинальным питающим напряжением управления AC 115 B).

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

3RW44

Стандартное подключение, фидеры с предохранителями для защиты полупроводников SITOR 3NE или 3NC
(защита полупроводниковых элементов УПП предохранителями, защита линии от токов КЗ и защита от перегрузки автоматическим выключателем)

						Соответствуюш LV 10.1 --> "Раз "Системы с пре полупроводник	цие держ ъединит дохрани ов типа	атели пр ели нагру телями" SITOR" и.	ителей см. в кат каталоге LV 10. дохранители для йте www.siemens	```талоге 1 --> защиты s.de/sitor```
Устройство плавного пуска		Предохранители полупроводни	и для защиты ов, мин.		Предохраните полупроводни	я защиты макс.		Предохр полупро	ля защиты (цилиндрическ	
	Номинальный ток A	$\begin{aligned} & 690 \text { B }+10 \% \\ & \text { F3 } \\ & \text { Тип } \end{aligned}$	Номинальный ток A	Типоразмер	$\begin{aligned} & 690 \text { B +10 \% } \\ & \text { F3 } \\ & \text { Тип } \\ & \hline \end{aligned}$	Номинальный ток A	Типоразмер	F3 Тип	Номинальный ток A	Типоразмер
Тип коорд	ации $2^{3)}$: I_{q}	65 kA								
3RW44 22 3RW44 23 3RW44 24	$\begin{aligned} & 29 \\ & 36 \\ & 47 \end{aligned}$	3NE4 120 3NE4 121 3NE4 121	$\begin{aligned} & 80 \\ & 100 \\ & 100 \end{aligned}$	0 0 0	3NE4 121 3NE4 121 3NE4 122	$\begin{aligned} & 100 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	3NC2 280 3NC2 200 3NC2 200	$\begin{aligned} & 80 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 22 \times 58 \\ & 22 \times 58 \\ & 22 \times 58 \end{aligned}$
3RW44 25 3RW44 26 3RW44 27	$\begin{aligned} & 57 \\ & 77 \\ & 93 \end{aligned}$	3NE4 122 3NE4 124 3NE3 224	$\begin{aligned} & 125 \\ & 160 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	3NE4 124 3NE4 124 3NE3 332-0B	$\begin{aligned} & 160 \\ & 160 \\ & 400 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \end{aligned}$			
3RW44 34 3RW44 35 3RW44 36	$\begin{aligned} & 113 \\ & 134 \\ & 162 \end{aligned}$	3NE3 225 3NE3 225 3NE3 227	$\begin{aligned} & 200 \\ & 200 \\ & 250 \\ & \hline \end{aligned}$	1 1 1	3NE3 335 3NE3 335 3NE3 333	$\begin{aligned} & \hline 560 \\ & 560 \\ & 450 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$			
3RW44 43 3RW44 44 3RW44 45	$\begin{aligned} & 203 \\ & 250 \\ & 313 \end{aligned}$	3NE3 230-OB 3NE3 230-OB 3NE3 233	$\begin{aligned} & 315 \\ & 315 \\ & 450 \end{aligned}$	1 1 1	3NE3 333 3NE3 333 3NE3 336	$\begin{aligned} & 450 \\ & 450 \\ & 630 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$			
3RW44 46 3RW44 47	$\begin{array}{r} 356 \\ 432 \\ \hline \end{array}$	$\begin{aligned} & \text { 3NE3 } 333 \\ & \text { 3NE3 } 335 \\ & \hline \end{aligned}$	$\begin{aligned} & 450 \\ & 560 \end{aligned}$	2	3NE3 336 3NE3 338-8	$\begin{aligned} & 630 \\ & 800 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$			
3RW44 53 3RW44 54 3RW44 55	$\begin{aligned} & 551 \\ & 615 \\ & 693 \end{aligned}$	$\begin{aligned} & 2 \times 3 \text { NE3 } 335 \\ & 2 \times 3 \text { NE3 } 335 \\ & 2 \times \text { 3NE3 } 335 \end{aligned}$	$\begin{aligned} & 560 \\ & 560 \\ & 560 \end{aligned}$	2 2 2	$\begin{aligned} & 3 \times 3 N E 3334-0 B \\ & 3 \times 3 N E 3334-0 B \\ & 3 \times 3 N E 3334-0 B \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$			
3RW44 56 3RW44 57 3RW44 58	$\begin{aligned} & 780 \\ & 880 \\ & 970 \end{aligned}$	$\begin{aligned} & 2 \times \text { 3NE3 } 336 \\ & 2 \times \text { 3NE3 } 336 \\ & 2 \times \text { 3NE3 } 336 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 630 \end{aligned}$	2 2 2	$\begin{aligned} & 2 \times 3 \text { 3NE3 } 340-8 \\ & 2 \times \text { 3NE3 } 340-8 \\ & 2 x \text { 3NE3 } 340-8 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \end{aligned}$			
3RW44 65 3RW44 66	$\begin{aligned} & 1076 \\ & 1214 \end{aligned}$	$\begin{aligned} & 2 \times 3 N E 3340-8 \\ & 2 \times 3 \text { NE3 } 340-8 \end{aligned}$	$\begin{aligned} & 900 \\ & 900 \end{aligned}$	2	$\begin{aligned} & 3 \times 3 N E 3338-8 \\ & 3 \times 3 N E 3338-8 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$			

Устройство плавного пуска \square Q11 Тип	Номинальный ток A	Сетевой контактор до 400 B (опционально) Q21 Тип	Тормозной контактор ${ }^{12)}$ (примеры схем подключения см. в руководстве по УПП 3RW44)	Автоматический выключатель		Предохранители для защиты линий, макс.		
				$\begin{aligned} & 440 \text { B +10 \% } \\ & \text { Q1 } \\ & \text { Тип } \end{aligned}$	Номинальный ток A	$\begin{aligned} & 690 \text { B +5 \% } \\ & \text { F1 } \\ & \text { Тип } \end{aligned}$	Номинальный ток A	Типоразмер
Тип координации $2^{3)}$: $I_{\text {q }}=65$ кА								
3RW44 22 3RW44 23 3RW44 24	29 36 47	$\begin{aligned} & \text { 3RT10 } 34 \\ & \text { 3RT10 } 35 \\ & \text { 3RT10 } 36 \end{aligned}$	3RT15 26 3RT15 26 3RT15 35	3RV10 41-4HA10 3RV10 41-4JA10 3RV10 41-4KA10	$\begin{aligned} & 50 \\ & 63 \\ & 75 \end{aligned}$	3NA3 820-6 3NA3 822-6 3NA3 824-6	$\begin{aligned} & 50 \\ & 63 \\ & 80 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 00 \end{aligned}$
3RW44 25 3RW44 26 3RW44 27	57 77 93	3RT10 44 3RT10 45 3RT10 46	3RT15 35 -- 3RT10 24 3RT10 35 3RT10 25 3RT10 36	3RV10 41-4LA10 3RV10 41-4MA10 3RV10 41-4MA10	$\begin{aligned} & 90 \\ & 100 \\ & 100 \\ & \hline \end{aligned}$	3NA3 830-6 3NA3 132-6 3NA3 136-6	$\begin{aligned} & 100 \\ & 125 \\ & 160 \\ & \hline \end{aligned}$	$\begin{aligned} & 00 \\ & 1 \\ & 1 \end{aligned}$
3RW44 34 3RW44 35 3RW44 36	$\begin{aligned} & 113 \\ & 134 \\ & 162 \end{aligned}$	$\begin{aligned} & \hline \text { 3RT10 } 54 \\ & \text { 3RT10 } 55 \\ & \text { 3RT10 } 56 \end{aligned}$	3RT10 34 3RT10 44 3RT10 36 3RT10 45 3RT10 44 3RT10 45	$\begin{aligned} & \hline \text { 3VL17 } 16 \\ & \text { 3VL17 } 16 \\ & \text { 3VL37 } 25 \end{aligned}$	$\begin{aligned} & \hline 160 \\ & 160 \\ & 250 \\ & \hline \end{aligned}$	3NA3 244-6 3NA3 244-6 3NA3 365-6	$\begin{aligned} & 250 \\ & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \end{aligned}$
3RW44 43 3RW44 44 3RW44 45	203 250 313	$\begin{aligned} & \hline \text { 3RT10 } 64 \\ & \text { 3RT10 } 65 \\ & \text { 3RT10 } 75 \end{aligned}$	3RT10 44 3RT10 54 3RT10 44 3RT1055 3RT10 54 3RT10 56	$\begin{aligned} & \hline \text { 3VL47 } 31 \\ & \text { 3VL47 } 31 \\ & \text { 3VL47 } 40 \end{aligned}$	$\begin{aligned} & 315 \\ & 315 \\ & 400 \end{aligned}$	$\begin{aligned} & 2 \times \text { 3NA3 } 354-6 \\ & 2 \times 3 \text { 3NA3 } 354-6 \\ & 2 x \text { 3NA3 } 365-6 \end{aligned}$	$\begin{aligned} & 2 \times 355 \\ & 2 \times 355 \\ & 2 \times 500 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \end{aligned}$
3RW44 46 3RW44 47	$\begin{aligned} & 356 \\ & 432 \end{aligned}$	$\begin{aligned} & \text { 3RT10 } 75 \\ & \text { 3RT10 } 76 \end{aligned}$	3RT10 54 3RT10 56 3RT10 55 3RT10 64	$\begin{aligned} & \text { 3VL47 } 40 \\ & \text { 3VL57 } 50 \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \end{aligned}$	$\begin{aligned} & 2 \times 3 N A 3 \text { 365-6 } \\ & 2 \times 3 \text { 3NA3 365-6 } \end{aligned}$	$\begin{array}{r} 2 \times 500 \\ 2 \times 500 \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$
3RW44 53 3RW44 54 3RW44 55	551 615 693	3TF68 3TF68 3TF69	3RT10 64 3RT10 66 3RT10 64 3RT10 75 3RT10 65 3RT10 75	$\begin{aligned} & \text { 3VL67 } 80 \\ & \text { 3VL67 } 80 \\ & \text { 3VL67 } 80 \end{aligned}$	$\begin{aligned} & \hline 800 \\ & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 2 \times 3 N A 3 ~ 365-6 \\ & 2 \times 3 \text { 3NA3 } 365-6 \\ & 2 \times 3 N A 3 ~ 365-6 \end{aligned}$	$\begin{aligned} & 2 \times 500 \\ & 2 \times 500 \\ & 2 \times 500 \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 3 \\ & 3 \end{aligned}$
3RW44 56 3RW44 57 3RW44 58	$\begin{aligned} & 780 \\ & 880 \\ & 970 \\ & \hline \end{aligned}$	3TF69	3RT10 65 3RT10 75 3RT10 75 3RT10 76 3RT10 75 3RT10 76	$\begin{aligned} & \text { 3VL77 } 10 \\ & \text { 3VL77 } 10 \\ & \text { 3VL77 } 12 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \\ & 1250 \end{aligned}$	$\begin{aligned} & 2 \times 3 N A 3 ~ 365-6 \\ & 2 \times 3 \text { 3NA3 365-6 } \\ & 3 \times \text { 3NA3 365-6 } \end{aligned}$	$\begin{aligned} & 2 \times 500 \\ & 2 \times 500 \\ & 3 \times 500 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$
3RW44 65 3RW44 66	$\begin{aligned} & 1076 \\ & 1214 \end{aligned}$		3RT10 75 3TF68 3RT10 76 3TF68	$\begin{aligned} & \text { 3VL77 } 12 \\ & \text { 3VL77 } 12 \end{aligned}$	1250 1250	$\begin{aligned} & 3 \times \text { 3NA3 365-6 } \\ & 3 \times 3 \text { NA3 365-6 } \end{aligned}$	$\begin{aligned} & 3 \times 500 \\ & 3 \times 500 \end{aligned}$	3 3

1) Если выбирается функция "торможение инжекцией постоянного тока", то требуется установка дополнительного тормозного контактора (тип контактора см. в таблице). Если выбирается функция
комбинированное торможение", то тормозной контактор не
рребуется. Для применений с большим моментом инерции
($J_{\text {нагрузки }}>J_{\text {двигателя }}$) рекомендуется выбирать функцию "торможение инжекцией постоянного тока"..
2) Дополнительное вспомогательное реле (K4):

LZX:RT4A4T30 (для устройств плавного пуска 3RW44 с номинальным питающим напряжением управления AC 230 B), LZX:RT4A4S15 (для устройств плавного пуска 3RW44 с номинальным питающим напряжением управления AC 115 B).
3) Тип координации "2" относится к сборке УПП с установленным защитным элементом (автоматический выключатель/ предохранители), но не к другим компонентам, установленным в фидере.

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

3RW44

Подключение по схеме "внутри треугольника", фидеры с предохранителями SITOR 3NE или 3NC
(защита полупроводниковых элементов УПП предохранителями, защита линии от токов КЗ и защита от перегрузки
автоматическим выключателем)

Соответствующие держатели предохранителей см. в каталоге LV 10.1 --> "Разъединители нагрузки" и в каталоге LV 10.1 --> "Системы с предохранителями" --> "Предохранители для защиты полупроводников типа SITOR" или на сайте www.siemens.de/sitor

Устройство плавного пуска$\begin{gathered} \mathrm{TOCO} \\ 2 \end{gathered}$$\square$	Номинальный ток	Предохранители для защиты полупроводников, мин.			Предохранители для защиты полупроводников, макс.			Предохранители для защиты полупроводников (цилиндрические)		
		690 B +10\%	Номинальный ток	Типоразмер	690 B +10 \%	Номинальный ток	Типоразмер		Номинальный тоK	Типоразмер
$\begin{aligned} & \text { Q11 } \\ & \text { Тип } \end{aligned}$	A	$\begin{aligned} & \text { F3 } \\ & \text { Тип } \end{aligned}$	A					$\begin{aligned} & \text { F3 } \\ & \text { Tип } \end{aligned}$		
Тип координации $2^{1)}$										
3RW44 22	50	3NE4 120	80	0	3NE4 121	100	0	3NC2 280	80	22×58
3RW44 23	62	3NE4 121	100	0	3NE4 121	100	0	3NC2 200	100	22×58
3RW44 24	81	3NE4 121	100	0	3NE4 122	125	0	3NC2 200	100	22×58
3RW44 25	99	3NE4 122	125	0	3NE4 124	160	0			
3RW44 26	133	3NE4 124	160	0	3NE4 124	160	0			
3RW44 27	161	3NE3 224	160	1	3NE3 332-OB	400	2			
3RW44 34	196	3NE3 225	200	1	3NE3 335	560	2			
3RW44 35	232	3NE3 225	200	1	3NE3 335	560	2			
3RW44 36	281	3NE3 227	250	1	3NE3 333	450	2			
3RW44 43	352	3NE3 230-0B	315	1	3NE3 333	450	2			
3RW44 44	433	3NE3 230-OB	315	1	3NE3 333	450	2			
3RW44 45	542	3NE3 233	450	1	3NE3 336	630	2			
3RW44 46	617	3NE3 333	450	2	3NE3 336	630	2			
3RW44 47	748	3NE3 335	560	2	3NE3 338-8	800	2			
3RW44 53	954	2×3 NE3 335	560	2	3×3 NE3 334-OB	500	2			
3RW44 54	1065	2×3 NE3 335	560	2	3×3 NE3 334-OB	500	2			
3RW44 55	1200	2×3 NE3 335	560	2	3×3 NE3 334-0B	500	2			
3RW44 56	1351	2×3 NE3 336	630	2	2×3 NE3 340-8	900	2			
3RW44 57	1524	2×3 NE3 336	630	2	3×3 NE3 340-8	900	2			
3RW44 58	1680	2×3 NE3 336	630	2	3×3 NE3 340-8	900	2			
3RW44 65	1864	2×3 NE3 340-8	900	2	3×3 NE3 338-8	800	2			
3RW44 66	2103	2×3 NE3 340-8	900	2	3×3 NE3 338-8	800	2			

Устройство плавного пуска \square $\begin{gathered} \mathrm{TOOC} \\ 2 \\ \hline \end{gathered}$ Q11 Тип	Номинальный TOK A	Сетевой контактор до 400 B	Автоматический выключатель		Предохранители для защиты линий, макс.		
		(опционально)	$440 \text { B +10 \% }$	Номинальный ток	$690 \text { B +5 \% }$	Номинальный ток	Типоразмер
		$\begin{aligned} & \text { Q21 } \\ & \text { Тип } \end{aligned}$		A		A	
Тип координации 21)							
3RW44 22 3RW44 23 3RW44 24	50 62 81	3RT10 36-1AP04 3RT10 44-1AP04 3RT10 46-1AP04	3RV10 42-4KA10 3RV10 42-4LA10 3RV10 42-4MA10	$\begin{aligned} & 75 \\ & 90 \\ & 100 \end{aligned}$	3NA3 824-6 3NA3 830-6 3NA3 132-6	$\begin{aligned} & 80 \\ & 100 \\ & 125 \end{aligned}$	$\begin{aligned} & 00 \\ & 00 \\ & 1 \end{aligned}$
3RW44 25 3RW44 26 3RW44 27	$\begin{aligned} & 99 \\ & 133 \\ & 161 \end{aligned}$	3RT10 54-1AP36 3RT10 55-6AP36 3RT10 56-6AP36	$\begin{aligned} & \text { 3VL27 } 16 \\ & \text { 3VL27 } 16 \\ & \text { 3VL37 } 20 \end{aligned}$	$\begin{aligned} & 160 \\ & 160 \\ & 200 \end{aligned}$	$\begin{aligned} & \text { 3NA3 136-6 } \\ & \text { 3NA3 240-6 } \\ & \text { 3NA3 244-6 } \end{aligned}$	$\begin{aligned} & 160 \\ & 200 \\ & 250 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 2 \end{aligned}$
3RW44 34 3RW44 35 3RW44 36	$\begin{aligned} & 196 \\ & 232 \\ & 281 \end{aligned}$	3RT10 64-6AP36 3RT10 65-6AP36 3RT10 66-6AP36	$\begin{aligned} & \text { 3VL37 } 25 \\ & \text { 3VL47 } 31 \\ & \text { 3VL47 } 40 \end{aligned}$	$\begin{aligned} & 250 \\ & 315 \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3NA3 360-6 } \\ & \text { 3NA3 360-6 } \\ & 2 \times \text { 3NA3 360-6 } \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 2 \times 400 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
3RW44 43 3RW44 44 3RW44 45	$\begin{aligned} & 352 \\ & 433 \\ & 542 \end{aligned}$	3RT10 75-6AP36 3RT10 76-6AP36 3TF68 44-0CM7	$\begin{aligned} & \text { 3VL47 } 40 \\ & \text { 3VL57 } 50 \\ & \text { 3VL57 } 63 \end{aligned}$	$\begin{aligned} & 400 \\ & 500 \\ & 800 \end{aligned}$	2×3 NA3 $365-6$ 2×3 NA3 $365-6$ $3 \times 3 N A 3 ~ 365-6$	$\begin{aligned} & 2 \times 500 \\ & 2 \times 500 \\ & 3 \times 500 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
3RW44 46 3RW44 47	$\begin{aligned} & 617 \\ & 748 \end{aligned}$	$\begin{aligned} & \text { 3TF68 44-0CM7 } \\ & \text { 3TF69 } \end{aligned}$	$\begin{aligned} & \text { 3VL67 } 80 \\ & \text { 3VL67 } 80 \end{aligned}$	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	$\begin{aligned} & 3 \times 3 N A 3 ~ 365-6 \\ & 3 \times 3 N A 3 ~ 365-6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \times 500 \\ & 3 \times 500 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \end{aligned}$
3RW44 53 3RW44 54 3RW44 55	$\begin{aligned} & 954 \\ & 1065 \\ & 1200 \end{aligned}$		$\begin{aligned} & \text { 3VL77 } 10 \\ & \text { 3VL77 } 12 \\ & \text { 3VL87 } 16 \end{aligned}$	$\begin{aligned} & 1000 \\ & 1250 \\ & 1600 \end{aligned}$	$\begin{aligned} & 3 \times 3 N A 3365-6 \\ & 3 \times 3 \text { NA3 } 365-6 \\ & 3 \times 3 \text { NA3 } 365-6 \end{aligned}$	3×500 3×500 3×500	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$
3RW44 56 3RW44 57 3RW44 58	$\begin{aligned} & 1351 \\ & 1524 \\ & 1680 \end{aligned}$		$\begin{aligned} & \text { 3VL87 } 16 \\ & \text { 3VL87 } 16 \\ & \text { 3WL12 } 20 \end{aligned}$	$\begin{aligned} & 1600 \\ & 1600 \\ & 2000 \end{aligned}$	$\begin{aligned} & 3 \times 3 N A 3372 \\ & 3 \times 3 N A 3372 \\ & 2 \times 3 N A 3480 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \times 630 \\ & 3 \times 630 \\ & 2 \times 1000 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 4 \end{aligned}$
3RW44 65 3RW44 66	$\begin{aligned} & 1864 \\ & 2103 \end{aligned}$		$3 W L 12$ $3 W$ $3 W L 12$	2500 2500	$2 \times 3 N A 3482$ $2 \times 3 N A 3482$	$\begin{aligned} & 2 \times 1250 \\ & 2 \times 1250 \end{aligned}$	4

1) Тип координации "2" относится к сборке УПП с установленным защитным элементом (автоматический выключатель/
предохранители), но не к другим компонентам, установленным в фидере.

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Данные для выбора и заказа
SIRIUS 3RW44 для нормальных условий пуска（CLASS 10），стандартное подключение

Тип клемм вспомогательных цепей
－Винтовые клеммы
－Пружинные клеммы

113	30	55	－－	－－	－－	100	30	30	75	－－	B	3RW44 34－■BC $\square 4$	1880，	1	1 шт．	131
134	37	75	－－	－－	－－	117	30	40	75	－－	B	3RW44 35－口ВC■4	2240，－	1	1 шт．	131
162	45	90	－－	－－	－－	145	40	50	100	－－	B	3RW44 36－■BCD4	2690 ，－	1	1 шт．	131
203	55	110	－－	－－	－－	180	50	60	125	－－	B	3RW44 43－\square BC $\square 4$	$3080,-$	1	1 шт．	131
250	75	132	－－	－－	－－	215	60	75	150	－－	B	3RW44 44－■BCD4	$3520,-$	1	1 шт．	131
313	90	160	－－	－－	－－	280	75	100	200	－－	B	3RW44 45－\square BC $\square 4$	$4280,-$	1	1 шт．	131
356	110	200	－－	－－	－－	315	100	125	250	－－	B	3RW44 46－■BC $\square 4$	5010，－	1	1 шт．	131
432	132	250	－－	－－	－－	385	125	150	300	－－	B	3RW44 47－口ВCD4	$5870,-$	1	1 шт．	131
551	160	315	－－	－－	－－	494	150	200	400	－－	C	3RW44 53－口BCD4	6880 ，－	1	1 шт．	131
615	200	355	－－	－－	－－	551	150	200	450	－－	C	3RW44 54－\square BC $\square 4$	8020 ，－	1	1 шт．	131
693	200	400	－－	－－	－－	615	200	250	500	－－	C	3RW44 55－口ВCD4	8940 ，－	1	1 шт．	131
780	250	450	－－	－－	－－	693	200	250	600	－－	C	3RW44 56－口ВC口4	9750,	1	1 шт．	131
880	250	500	－－	－－	－－	780	250	300	700	－－	C	3RW44 57－口BC口4	10600，－	1	1 шт．	131
970	315	560	－－	－－	－－	850	300	350	750	－－	C	3RW44 58－口ВС $\square 4$	11400，－	1	1 шт．	131
1076	355	630	－－	－－	－－	970	350	400	850	－－	C	3RW44 65－■BC口4	12200，－	1	1 шт．	131
1214	400	710	－－	－－	－－	1076	350	450	950	－－	C	3RW44 66－■BCD4	$13300,-$	1	1 шт．	131

－Пружинные клеммы
－Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{2}$ ）
－AC 115 В（по запросу）
－AC 230 B
1）Устройства плавного пуска 3RW44 2．．．．3RW44 4．с винтовыми клеммами：класс срока поставки＞（Предпочтительный тип）．
2）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае．

Примечание

Указанные мощности двигателя являются ориентировочными．
Параметры УПП должны всегда определяться по номинальному рабочему току двигателя．
Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены
с учетом следующих граничных условий（следует учитывать
примечания на странице 4／6 ）：
－Максимальное время разгона： 10 с．
－Максимальный пусковой ток I_{e} ： 300% тока двигателя
－Максимальное количество пусков в час в 1／ч： 5
＊Заказывается указанное или кратное данному количество． Листовые цены на 2010／2011 ф．г．Иллюстрации приблизительные

При более высоких требованиях следует выбирать более мощное устройство．номинальному．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Тип клемм вспомогательных цепей
－Винтовые клеммы
－Пружинные клеммы

113	－－	55	75	－－	－－	100	－－	－－	75	75	B	3RW44 34－■BC口5	2180,	1	1 шт．	131
134	－－	75	90	－－	－－	117	－－	－－	75	100	B	3RW44 35－■BCD5	2580，－	1	1 шт．	131
162	－－	90	110	－－	－－	145	－－	－－	100	125	B	3RW44 36－\square BC $\square 5$	$3100,-$	1	1 шт．	131
203	－－	110	132	－－	－－	180	－－	－－	125	150	B	3RW44 43－\square BC $\square 5$	3560 ，－	1	1 шт．	131
250	－－	132	160	－－	－－	215	－－	－－	150	200	B	3RW44 44－■BC口5	4050，－	1	1 шт．	131
313	－－	160	200	－－	－－	280	－－	－－	200	250	B	3RW44 45－口ВС $\square 5$	$4930,-$	1	1 шт．	131
356	－－	200	250	－－	－－	315	－－	－－	250	300	B	3RW44 46－■BC口5	5760，－	1	1 шт．	131
432	－－	250	315	－－	－－	385	－－	－－	300	400	B	3RW44 47－\square BC $\square 5$	6730，－	1	1 шт．	131
551	－－	315	355	－－	－－	494	－－	－－	400	500	C	3RW44 53－\square BC $\square 5$	$7920,-$	1	1 шт．	131
615	－－	355	400	－－	－－	551	－－	－－	450	600	C	3RW44 54－■BCD5	$9240,-$	1	1 шт．	131
693	－－	400	500	－－	－－	615	－－	－－	500	700	C	3RW44 55－口ВСロ5	10300，－	1	1 шт．	131
780	－－	450	560	－－	－－	693	－－	－－	600	750	C	3RW44 56－口ВCD5	11200，－	1	1 шт．	131
880	－－	500	630	－－	－－	780	－－	－－	700	850	C	3RW44 57－口ВС $\square 5$	12200，	1	1 шт．	131
970	－－	560	710	－－	－－	850	－－	－－	750	900	C	3RW44 58－口ВС $\square 5$	$13300,-$	1	1 шт．	131
1076	－－	630	800	－－	－－	970	－－	－－	850	1100	C	3RW44 65－\square BC $\square 5$	14100，－	1	1 шт．	131
1214	－－	710	900	－－	－－	1076	－－	－－	950	1200	C	3RW44 66－口ВCD5	15 200，－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Пружинные клеммы
2
－Винтовые клеммы
Номинальное питающее напряжение управления $\boldsymbol{U}_{\mathrm{s}}{ }^{2}$ ）
－AC 115 B（по запросу）
－AC 230 B
1）Устройства плавного пуска с винтовыми клеммами： 3RW44 2．．．．3RW44 4．Класс срока поставки A， 3RW44 5．．．．3RW44 6．Класс срока поставки В．

вововравление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае．

Примечание

Указанные мощности двигателя являются ориентировочными．
Параметры устройства плавного пуска должны всегда
определяться номинальному рабочему току двигателя．
Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены с учетом следующих граничных условий（также следует
учитывать примечания на странице 4／6 ）：
－Максимальное время разгона： 10 с
－Максимальный пусковой ток I_{e} ： 300% тока двигателя
－Максимальное количество пусков в час в 1／ч： 5
При более высоких требованиях следует выбирать более мощное устройство．номинальному．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Тип клемм вспомогательных цепей

- Пружинные клеммы

Номинальное питающее напряжение управления $U_{s}{ }^{1)}$

- AC 115 В (по запросу)
- AC 230 B

1) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае.
Примечание
Указанные мощности двигателя являются
ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя.

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий
(также следует учитывать примечания на странице 4/6):

- Максимальное время разгона: 10 с.
- Максимальный пусковой ток I_{e} : 300% тока двигателя
- Максимальное количество пусков в час в 1/ч: 5

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

SIRIUS 3RW44 для тяжелых условий пуска (CLASS 20), стандартное подключение

Тип клемм вспомогательных цепей

- Пружинные клеммы
- Винтовые клеммы

Номинальное питающее напряжение управления $U_{s}{ }^{2}$)

- AC 115 В (по запросу)

1) Устройства плавного пуска 3RW44 2. до 3RW44 4. с винтовыми клеммами: класс срока поставки $>$ (Предпочтительный тип).
2) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае.
Примечание
Указанные мощности двигателя являются ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя.

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий (также следует
учитывать примечания на странице 4/6):

- Максимальное время разгона: 40 с.
- Максимальный пусковой ток $I_{e}: 350 \%$ тока двигателя
- Максимальное количество пусков в час в 1/ч: 1

При более высоких требованиях следует выбирать более мощное устройство. номинальному. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Тип клемм вспомогательных цепей

- Пружинные клеммы

В Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{2}$)

- AC 115 В (по запросу)
- AC 230 B

1) Устройства плавного пуска с винтовыми клеммами:

3RW44 2. до 3RW44 4. Класс срока поставки A
3RW44 5. до 3RW44 6. Класс срока поставки В
2) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае

Примечание

Указанные мощности двигателя являются ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий (также следует учитывать примечания на странице 4/6):

- Максимальное время разгона: 40 с.
- Максимальный пусковой ток I_{e} : 350% тока двигателя
- Максимальное количество пусков в час в 1/ч: 1

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Температура окр． 3 RW среды $40^{\circ} \mathrm{C}^{1)}$						Температура окр． 3 RW среды $50^{\circ} \mathrm{C}^{1)}$					Кл． пост．	Тяжелые условия пуска （CLASS 20） Стандартное подключение		$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	Кол－во уп．＊	Уп．
Ном．параметры 3－фазных электродвигателей						Ном．параметры 3－фазных электродвигателей										
Рабочий ток $I_{\text {e }}$	Ном． рабо	мощно чем нап	сть при ряжен			Рабочийток I_{e}	Ном．м рабоче	мщность	при жении U							
A	$\begin{aligned} & 230 \\ & \mathrm{kBT} \end{aligned}$	$\begin{aligned} & 400 \mathrm{~B} \\ & \text { кBт } \end{aligned}$	$\begin{aligned} & 500 \mathrm{~B} \\ & \text { кBт } \end{aligned}$	$\begin{aligned} & 690 \text { B } \\ & \text { кВт } \end{aligned}$	$\begin{aligned} & 1000 \text { B } \\ & \text { кBт } \end{aligned}$	A	$\begin{aligned} & 200 \text { В } \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 230 \text { B } \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 460 \text { B } \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 575 \text { B } \\ & \text { л.с. } \end{aligned}$		Заказной номер	Цена € за ЕП			
29	－－	15	18，5	30	－－	26	－－	－－	15	20	B	3RW44 22－ロBC■6	1270，－	1	1 шт．	131
36	－－	18，5	22	37	－－	32	－－	－－	20	25	B	3RW44 23－■BCD6	1440，－	1	1 шт．	131
47	－－	22	30	45	－－	42	－－	－－	25	30	B	3RW44 24－ロBC■6	1670，－	1	1 шт．	131
57	－－	30	37	55	－－	51	－－	－－	30	40	B	3RW44 25－■BC■6	1830，－	1	1 шт．	131
77	－－	37	45	75	－	68	－－	－－	50	50	B	3RW44 27－ロBCD6	2210，－	1	1 шт．	131
Тип клемм вспомогательных цепей																
－Винтовые клеммы －Пружинные клеммы												$\begin{aligned} & 1 \\ & 3 \\ & \hline \end{aligned}$				
$\begin{aligned} & 93 \\ & 113 \\ & 134 \end{aligned}$	－－	45	55	90	－－	82	－－	－－	60	75	B	3RW44 34－ロBCD6	2440，－	1	1 шт．	131
	－－	55	75	110	－－	100	－－	－－	75	75	B	3RW44 35－■BCD6	2910，－	1	1 шт．	131
	－－	75	90	132	－－	117	－－	－－	75	100	B	3RW44 36－ロBCロ6	3520，－	1	1 шт．	131
162	－－	90	110	160	－－	145	－－	－－	100	125	B	3RW44 43－■BCD6	4020，－	1	1 шт．	131
203	－－	110	132	200	－－	180	－－	－－	125	150	B	3RW44 45－口BCD6	5570，－	1	1 шт．	131
250	－－	132	160	250	－－	215	－－	－－	150	200	B	3RW44 46－■BC■6	6520，－	1	1 шт．	131
313	－－	160	200	315	－－	280	－－	－－	200	250	B	3RW44 47－ロBCD6	$7620,-$	1	1 шт．	131
356	－－	200	250	355	－－	315	－－	－－	250	300	B	3RW44 47－ロBC－ 6	7620，－	1	1 шт．	131
432	－－	250	315	400	－－	385	－－	－－	300	400	C	3RW44 53－■BC■6	8940，－	1	1 шт．	131
551	－－	315	355	560	－－	494	－－	－－	400	500	C	3RW44 53－■BCD6	8940，－	1	1 шт．	131
615	－－	355	400	630	－－	551	－－	－－	450	600	C	3RW44 55－口BCD6	11700，－	1	1 шт．	131
693	－－	400	500	710	－－	615	－－	－－	500	700	C	3RW44 57－ロBCD6	13900，－	1	1 шт．	131
780	－－	450	560	800	－－	693	－－	－－	600	750	C	3RW44 65－ロBCD6	15900，－	1	1 шт．	131
880	－－	500	630	900	－－	780	－－	－－	700	850	C	3RW44 65－ロBCロ6	15900，－	1	1 шт．	131
970	－－	560	710	1000	－－	850	－－	－－	750	900	C	3RW44 65－DBC■6	15900，－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Пружинные клеммы
В Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{1)}$
－AC 115 В（по запросу）
－AC 230 B
1）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае

Примечание

Указанные мощности двигателя являются ориентировочными．Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя．

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены с учетом следующих граничных условий （также следует учитывать примечания на странице 4／6）：
－Максимальное время разгона： 40 с．
－Максимальный пусковой ток $I_{e}: 350 \%$ тока двигателя
－Максимальное количество пусков в час в 1／ч： 1
При более высоких требованиях следует выбирать более мощное устройство．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

SIRIUS 3RW44 для особо тяжелых условий пуска (CLASS 30), стандартное подключение

Тип клемм вспомогательных цепей

- Пружинные клеммы
- Винтовые клеммы

Номинальное питающее напряжение управления $U_{s}{ }^{2)}$

- AC 115 В (по запросу)
- AC 230 B

1) Устройства плавного пуска 3RW44 2. до 3RW44 4. с винтовыми клеммами: класс срока поставки $>$ (Предпочтительный тип).
2) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае.

Примечание

Указанные мощности двигателя являются ориентировочными. Параметры УПП должны всегда определяться по номинальному рабочему току двигателя.
Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий (также следует учитывать примечания на странице 4/6):

- Максимальное время разгона: 60 с.
- Максимальный пусковой ток $I_{e}: 350 \%$ тока двигателя
- Максимальное количество пусков в час в 1/ч: 1
* Заказывается указанное или кратное данному количество. Листовые цены на 2010/2011 ф.г. Иллюстрации приблизительные

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Температура окр． 3 RW среды $40{ }^{\circ} \mathrm{C}{ }^{\text {）}}$						Температура окр． 3 RW среды $50{ }^{\circ} \mathrm{C}{ }^{1}$ ）					Кл． пост．	Особо тяжелые условия пуска（CLASS 30） Стандартное подключение		ЕП（шт．， кмпл．，м）	Кол－во уп．＊	Y
Ном．параметры 3－фазных электродвигателей						Ном．параметры 3－фазных электродвигателей										
Рабочий ток $I_{\text {e }}$	Ном．мощность при рабочем напряжении $U_{\text {e }}$					Рабочий ток $I_{\text {e }}$	Ном． рабоч	ощностт	при жении							
A	$\begin{aligned} & 230 \text { B } \\ & \text { кBт } \end{aligned}$	$\begin{aligned} & 400 \mathrm{~B} \\ & \text { кBт } \end{aligned}$	$\begin{aligned} & 500 \text { в } \\ & \text { кВт } \end{aligned}$	$\begin{aligned} & 690 \text { B } \\ & \text { кBт } \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~B} \\ & \mathrm{kBT} \end{aligned}$	A	$\begin{aligned} & 200 \text { B } \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 230 \mathrm{~B} \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 460 \mathrm{~B} \\ & \text { л.c. } \end{aligned}$	$\begin{aligned} & 575 \text { B } \\ & \text { л.с. } \end{aligned}$		Заказной номер	Цена € за ЕП			
Стандартное подключение Повышенное номинальное рабочее напряжение 400 ．．． 600 в ${ }^{1)}$																
29	－－	15	18，5	－－	－－	26	－－	－－	15	20	A	3RW44 22－■BCD5	1120，－	1	1 шт．	131
36	－－	18，5	22	－－	－－	32	－－	－－	20	25	A	3RW44 24－ロBCD5	1470，－	1	1 шт．	131
47	－－	22	30	－－	－－	42	－－	－－	25	30	A	3RW44 25－■BCD5	1600，－	1	1 шт．	131
57	－－	30	37	－－	－－	51	－－	－－	30	40	A	3RW44 25－■BCD5	1600，－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Винтовые клеммы
－Пружинные клеммы

77	－－	37	45	－－	－－	68	－－	－－	50	50	B	3RW44 34－ロBCD5	2180，－	1	1 шт．	131
93	－－	45	55	－－	－－	82	－－	－－	60	75	B	3RW44 35－ロBCD5	2580，－	1	1 шт．	131
113	－－	55	75	－－	－－	100	－－	－－	75	75	B	3RW44 43－■BCD5	3560，－	1	1 шт．	131
134	－－	75	90	－－	－－	117	－－	－－	75	100	B	3RW44 43－■BCD5	3560，－	1	1 шт．	131
162	－－	90	110	－－	－－	145	－－	－－	100	125	B	3RW44 43－■BCD5	3560，－	1	1 шт．	131
203	－－	110	132	－－	－－	180	－－	－－	125	150	B	3RW44 46－■BCD5	5760，－	1	1 шт．	131
250	－－	132	160	－－	－－	215	－－	－－	150	200	B	3RW44 47－ロBC口5	6730，－	1	1 шт．	131
313	－－	160	200	－－	－－	280	－－	－－	200	250	C	3RW44 53－ロBC口5	7920，－	1	1 шт．	131
356	－－	200	250	－－	－－	315	－－	－－	250	300	C	3RW44 53－■BCD5	$7920,-$	1	1 шт．	131
432	－－	250	315	－－	－－	385	－－	－－	300	400	C	3RW44 53－पВCD5	7920，－	1	1 шт．	131
551	－－	315	355	－－	－－	494	－－	－－	400	500	C	3RW44 55－■BC口5	$10300,-$	1	1 шт．	131
615	－－	355	400	－－	－－	551	－－	－－	450	600	C	3RW44 58－पBCD5	13300，－	1	1 шт．	131
693	－－	400	500	－－	－－	615	－－	－－	500	700	C	3RW44 65－■BC口5	14100，－	1	1 шт．	131
780	－－	450	560	－－	－－	693	－－	－－	600	750	C	3RW44 65－■BCD5	14100，－	1	1 шт．	131
880	－－	500	630	－－	－－	780	－－	－－	700	850	C	3RW44 65－ロBCD5	14100，－	1	1 шт．	131
－－	－－	－－	－－	－－	－－	850	－－	－－	750	900	C	3RW44 66－■BCD5	15200，－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Пружинные клеммь
В Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{2}$ ）
－AC 115 В（по запросу）
－AC 230 B
1）Устройства плавного пуска с винтовыми клеммами
3RW44 2．до 3RW44 4．Класс срока поставки A，
3RW445．до 3RW44 6．Класс срока поставки В．
2）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае

Примечание

Указанные мощности двигателя являются ориентировочными．Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя．

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены с учетом следующих граничных условий （также следует учитывать примечания на странице 4／6）：
－Максимальное время разгона： 60 с．
－Максимальный пусковой ток $I_{e}: 350 \%$ тока двигателя
－Максимальное количество пусков в час в 1／ч： 1
При более высоких требованиях следует выбирать более мощное устройство．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Температура окр． 3 RW среды $40{ }^{\circ} \mathrm{C}{ }^{\text {）}}$						Температура окр．3RW среды $50^{\circ} \mathrm{C}^{1)}$						Кл． пост．	Особо тяжелые условия пуска（CLASS 30） Стандартное подключение		$\begin{array}{r} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{array}$	Кол－во уп．＊	Уп．
Ном．параметры 3－фазных электродвигателей						Ном．параметры 3－фазных электродвигателей											
Рабочий ток I_{e}	Ном рабо	мощнос чем нап	ть при ряжении			$\begin{aligned} & \text { Раб } \\ & I_{\mathrm{e}} \end{aligned}$		Ном． рабоч	м нность	при жении U							
A	$\begin{aligned} & 230 \\ & \text { кBT } \end{aligned}$	$\begin{aligned} & 400 \mathrm{~B} \\ & \text { kBT } \end{aligned}$	$\begin{aligned} & 500 \text { B } \\ & \text { кВт } \end{aligned}$	$\begin{aligned} & 690 \text { B } \\ & \text { кBт } \end{aligned}$	$\begin{aligned} & 1000 \mathrm{~B} \\ & \text { kBT } \end{aligned}$	A		$\begin{aligned} & 200 \text { B } \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 230 \text { B } \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 460 \mathrm{~B} \\ & \text { л.с. } \end{aligned}$	$\begin{aligned} & 575 \text { B } \\ & \text { л.с. } \end{aligned}$		Заказной номер	Цена € за ЕП			
Стандартное подключение																	
29	－－	15	18，5	30	－－	26		－－	－－	15	20	B	3RW44 22－■BC■6	1270，－－	1	1 шт．	131
36	－－	18，5	22	37	－－	32		－－	－－	20	25	B	3RW44 24－ロBCロ6	1670，－－	1	1 шт．	131
47	－－	22	30	45	－－	42		－－	－－	25	30	B	3RW44 25－ロBC口6	1830，－－	1	1 шт．	131
57	－－	30	37	55	－－	51		－－	－－	30	40	B	3RW44 25－■BC■6	1830，－－	1	1 шт．	131
Тип клемм вспомогательных цепей																	
－Винтовые клеммы －Пружинные клеммы													$\begin{aligned} & 1 \\ & 3 \end{aligned}$				
77	－－	37	45	75	－－	68		－－	－－	50	50	B	3RW44 34－■BC口6	2440，－－	1	1 шт．	131
93	－－	45	55	90	－－	82		－－	－－	60	75	B	3RW44 35－ロBC■6	2910，－－	1	1 шт．	131
113	－－	55	75	110	－－	100		－－	－－	75	75	B	3RW44 43－■BC口6	4020，－－	1	1 шт．	131
134	－－	75	90	132	－－	117		－－	－－	75	100	B	3RW44 43－■BC口6	4020，－－	1	1 шт．	131
162	－－	90	110	160	－－	145		－－	－－	100	125	B	3RW44 43－ロBCロ6	4020，－－	1	1 шт．	131
203	－－	110	132	200	－－	180		－－	－－	125	150	B	3RW44 46－■BC口6	6520，－－	1	1 шт．	131
250	－－	132	160	250	－－	215		－－	－－	150	200	B	3RW44 47－ロBC■6	7620，－－	1	1 шт．	131
313	－－	160	200	315	－－	280		－－	－－	200	250	C	3RW44 53－■BC口6	8940，－－	1	1 шт．	131
356	－－	200	250	355	－－	315		－－	－－	250	300	C	3RW44 53－ロBCロ6	8940，－－	1	1 шт．	131
432	－－	250	315	400	－－	385		－－	－－	300	400	C	3RW44 53－ロBCロ6	8940，－－	1	1 шт．	131
551	－－	315	355	560	－－	494		－－	－－	400	500	C	3RW44 55－■BC口6	11700，－－	1	1 шт．	131
615	－－	355	400	630	－－	551		－－	－－	450	600	C	3RW44 58－पВCD6	14800，－－	1	1 шт．	131
693	－－	400	500	710	－－	615		－－	－－	500	700	C	3RW44 65－■BCロ6	15900，－－	1	1 шт．	131
780	－－	450	560	800	－－	693		－－	－－	600	750	C	3RW44 65－ロBCロ6	15900，－－	1	1 шт．	131
880	－－	500	630	900	－－	780		－－	－－	700	850	C	3RW44 65－ロBC口6	$15900,-$	1	1 шт．	131
－－	－－	－－	－－	－－	－－	850		－－	－－	750	900	C	3RW44 66－ロBCロ6	17200，－－	1	1 шт．	131

Тип клемм вспомогательных цепей
－Пружинные клеммы
В Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{1)}$
－AC 115 В（по запросу）
－AC 230 B
1）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае

Примечание

Указанные мощности двигателя являются ориентировочными．Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя．

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены с учетом следующих граничных условий （также следует учитывать примечания на странице 4／6）：
－Максимальное время разгона： 60 с．
－Максимальный пусковой ток $I_{e}: 350 \%$ тока двигателя
－Максимальное количество пусков в час в 1／ч： 1
При более высоких требованиях следует выбирать более мощное устройство．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

3RW44

SIRIUS 3RW44 для нормальных условий пуска（CLASS 10），подключение по схеме＂внутри треугольника＂

ип клемм вспомогательных цепей

－Винтовые клеммы
－Пружинные клеммы

196	55	110	－－	－－	－－	173	50	60	125	－－	B	3RW44 34－■BC口4	1880，－	1	1 шт．	131
232	75	132	－－	－－	－－	203	60	75	150	－－	B	3RW44 35－■BCD4	2 240，－	1	1 шт．	131
281	90	160	－－	－－	－－	251	75	100	200	－－	B	3RW44 36－■BCD4	2 690，－	1	1 шт．	131
352	110	200	－－	－－	－－	312	100	125	250	－－	B	3RW44 43－■BC口4	3080，－	1	1 шт．	131
433	132	250	－－	－－	－－	372	125	150	300	－－	B	3RW44 44－■BCD4	$3520,-$	1	1 шт．	131
542	160	315	－－	－－	－－	485	150	200	400	－－	B	3RW44 45－■BC口4	4280 ，－	1	1 шт．	131
617	200	355	－－	－－	－－	546	150	200	450	－－	B	3RW44 46－■BC口4	5010,	1	1 шт．	131
748	250	400	－－	－－	－－	667	200	250	600	－－	B	3RW44 47－口ВС $\square 4$	5870 ，－	1	1 шт．	131
954	315	560	－－	－－	－－	856	300	350	750	－－	C	3RW44 53－■BC口4	$6880,-$	1	1 шт．	131
1065	355	630	－－	－－	－－	954	350	400	850	－－	C	3RW44 54－■BC口4	$8020,-$	1	1 шт．	131
1200	400	710	－－	－－	－－	1065	350	450	950	－－	C	3RW44 55－■BC口4	$8940,-$	1	1 шт．	131
1351	450	800	－－	－－	－－	1200	450	500	1050	－－	C	3RW44 56－■BC口4	9750，－	1	1 шт．	131
1524	500	900	－－	－－	－－	1351	450	600	1200	－－	C	3RW44 57－■BC口4	10600，－	1	1 шт．	131
1680	560	1000	－－	－－	－－	1472	550	650	1300	－－	C	3RW44 58－■BC口4	11400，－	1	1 шт．	131
1864	630	1100	－－	－－	－－	1680	650	750	1500	－－	C	3RW44 65－■BC口4	12200，－	1	1 шт．	131
2103	710	1200	－－	－－	－－	1864	700	850	1700	－－	C	3RW44 66－\square BC $\square 4$	$13300,-$	1	1 шт．	131

ип клемм вспомогательных цепей

－Пружинные клеммь
－Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{3}$ ）
－AC 115 В（по запросу）
－AC 230 B
1）В таблице выбора номинальный ток выбираемого устройства плавного пуска le соответствует рабочему току электродвигателя только при подключении по схеме＂внутри треугольника＂
Фактический ток устройства при стандартном подключении ＂в линию＂составляет ок． 58 \％от этого значения
2）Устройства плавного пуска 3RW44 2．до 3RW44 4．с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）．
3）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае．

Примечание

Указанные мощности двигателя являются ориентировочными．Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя．

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены с учетом следующих граничных условий （также следует учитывать примечания на странице 4／6）：
－Максимальное время разгона： 10 с．
－Максимальный пусковой ток I_{e} ：300\％тока двигателя
－Максимальное количество пусков в час в 1／ч： 5
При более высоких требованиях следует выбирать более мощное устройство．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Тип клемм вспомогательных цепей

- Пружинные клеммы
- Винтовые клеммы

Номинальное питающее напряжение управления $U_{s}{ }^{3)}$

- AC 115 В (по запросу)
- AC 230 B

1) В таблице выбора номинальный ток выбираемого устройства плавного пуска le соответствует рабочему току электродвигателя
олько при подключении по схеме "внутри треугольника".
Фактический ток устройства при стандартном подключении
"в линию" составляет ок. 58 \% от этого значения
2) Устройства плавного пуска с винтовыми клеммами: 3RW44 2. до 3RW44 4. Класс срока поставки A 3RW44 5. до 3RW44 6. Класс срока поставки В.
3) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае.

Примечание

Указанные мощности двигателя являются
ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя.

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий (также следует учитывать примечания на странице 4/6):

- Максимальное время разгона: 10 с.
- Максимальный пусковой ток I_{e} : 300% тока двигателя
- Максимальное количество пусков в час в 1/ч: 5

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

SIRIUS 3RW44 для тяжелых условий пуска (CLASS 20), подключение по схеме "внутри треугольника"

Примечание

Указанные мощности двигателя являются ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя.
Электронные УПП SIRIUS 3RW44 рассчитаны на простые
условия пуска. Данные для выбора и заказа были определены
с учетом следующих граничных условий (также следует
учитывать примечания на странице 4/6):

- Максимальное время разгона: 40 с.
- Максимальный пусковой ток I_{e} : 350% тока двигателя
- Максимальное количество пусков в час в 1/ч: 1

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

1) В таблице выбора номинальный ток выбираемого устройства плавного пуска lе соответствует рабочему току электродвигателя только при подключении по схеме "внутри треугольника" Фактический ток устройства при стандартном подключении "в линию" составляет ок. 58 \% от этого значения

Примечание

Указанные мощности двигателя являются ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя.

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий (также следует учитывать примечания на странице 4/6):

- Максимальное время разгона: 40 с.
- Максимальный пусковой ток I_{e} : 350% тока двигателя
- Максимальное количество пусков в час в 1/ч: 1

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Пружинные клеммы
В Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{3}$)

- AC 115 В (по запросу)
- AC 230 B

2) Устройства плавного пуска с винтовыми клеммами: 3RW44 2. до 3RW44 4. Класс срока поставки A 3RW44 5. до 3RW44 6. Класс срока поставки В.
3) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае.

- Винтовые клеммы

Пружинные клеммы

Тип клемм вспомогательных цепей

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

SIRIUS 3RW44 для особо тяжелых условий пуска（CLASS 30），подключение по схеме＂внутри треугольника＂

Тип клемм вспомогательных цепей
－Винтовые клеммы
－Пружинные клеммы

161	45	90	－－	－－	－－	142	40	50	100	－	B	3RW44 35－■BCD4	2240，－	1	1 шт． 131
196	55	110	－－	－－	－－	173	50	60	125	－－	B	3RW44 36－口BCD4	2690，－	1	1 шт． 131
232	75	132	－－	－－	－－	203	60	75	150	－－	B	3RW44 43－■BCD4	3080，－	1	1 шт． 131
281	90	160	－－	－－	－－	251	75	100	200	－－	B	3RW44 43－■BCD4	3080，－	1	1 шт． 131
352	110	200	－－	－－	－－	312	100	125	250	－－	B	3RW44 45－口BCD4	4280，－	1	1 шт． 131
433	132	250	－－	－－	－－	372	125	150	300	－－	B	3RW44 47－ロBCD4	5870，－	1	1 шт． 131
542	160	315	－－	－－	－－	485	150	200	400	－－	C	3RW44 53－■BCD4	6880，－	1	1 шт． 131
617	200	355	－－	－－	－－	546	150	200	450	－－	C	3RW44 53－■BCD4	$6880,-$	1	1 шт． 131
748	250	400	－－	－－	－－	667	200	250	600	－－	C	3RW44 53－■BCD4	6880，－	1	1 шт． 131
954	315	560	－－	－－	－－	856	300	350	750	－－	C	3RW44 55－■BCD4	8940，－	1	1 шт． 131
1065	355	630	－－	－－	－－	954	350	400	850	－－	C	3RW44 58－ロBCD4	11400 ，－	1	1 шт． 131
1200	400	710	－－	－－	－－	1065	350	450	950	－	C	3RW44 65－口BCD4	12200，－	1	1 шт． 131
1351	450	800	－－	－－	－－	1200	450	500	1050	－－	C	3RW44 65－口BCD4	12200，－	1	1 шт． 131
1524	500	900	－－	－－	－－	1351	450	600	1200	－－	C	3RW44 65－口BCD4	12200，－	1	1 шт． 131
－－	－－	－－	－－	－－	－－	1472	550	650	1300	－－	C	3RW44 66－■BCD4	13300，－	1	1 шт． 131

Тип клемм вспомогательных цепей

－Пружинные клеммы
－Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{3}$ ）
－AC 115 В（по запросу）
－AC 230 B
1）В таблице выбора номинальный ток выбираемого устройства плавного пуска le соответствует рабочему току электродвигателя только при подключении по схеме＂внутри треугольника＂． Фактический ток устройства при стандартном подключении ＂в линию＂составляет ок． 58 \％от этого значения

2）Устройства плавного пуска 3RW44 2．до 3RW44 4．с винтовыми клеммами：класс срока поставки $>$（Предпочтительный тип）．
3）Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК．Питающее напряжение управления требуется в любом случае．

Примечание

Указанные мощности двигателя являются ориентировочными． Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя．

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска．Данные для выбора и заказа были определены с учетом следующих граничных условий（также следует
учитывать примечания на странице 4／6）：
－Максимальное время разгона： 60 с．
－Максимальный пусковой ток I_{e} ： 350% тока двигателя
－Максимальное количество пусков в час в 1／ч： 1

При более высоких требованиях следует выбирать более мощное устройство．номинальному．Подробные технические сведения о точном выборе оборудования для конкретных применений см．в руководстве для устройств．Мы рекомендуем использовать программу выбора и моделирования Win－Soft Starter．

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Тип клемм вспомогательных цепей

- Пружинные клеммы

В Винтовые клеммы
Номинальное питающее напряжение управления $U_{s}{ }^{3}$)

- AC 115 В (по запросу)
- AC 230 B

1) В таблице выбора номинальный ток выбираемого устройства плавного пуска lе соответствует рабочему току электродвигателя
только при подключении по схеме "внутри треугольника"
Фактический ток устройства при стандартном подключении "в линию" составляет ок. 58 \% от этого значения

Устройства плавного пуска с винтовыми клеммами: 3RW44 2. до 3RW44 4. Класс срока поставки A 3RW44 5. до 3RW44 6. Класс срока поставки В
3) Возможно управление внутренним напряжением 24 В и прямое управление от ПЛК. Питающее напряжение управления требуется в любом случае.

Примечание

Указанные мощности двигателя являются ориентировочными. Параметры устройства плавного пуска должны всегда определяться номинальному рабочему току двигателя.

Электронные УПП SIRIUS 3RW44 рассчитаны на простые условия пуска. Данные для выбора и заказа были определены с учетом следующих граничных условий (также следует учитывать примечания на странице 4/6):

- Максимальное время разгона: 60 с.
- Максимальный пусковой ток I_{e} : 350% тока двигателя
- Максимальное количество пусков в час в 1/ч: 1

При более высоких требованиях следует выбирать более мощное устройство. Подробные технические сведения о точном выборе оборудования для конкретных применений см. в руководстве для устройств. Мы рекомендуем использовать программу выбора и моделирования Win-Soft Starter.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

1) Подробная информация о программе Soft Starter ES и библиотеке модулей устройств плавного пуска SIRIUS 3RW44 для SIMATIC PCS 7 приведена в главе 12 "Параметрирование, проектирование и визуализация".

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Исполнение	Кл. пост.	Заказной номер	Цена € за ЕП	$\begin{gathered} \text { ЕП (шт., } \\ \text { кмпл., м) } \end{gathered}$	Кол-во уп.*

Кабель для подКлючения УПП 3RW44 к ПК							
	Для обмена данными УПП SIRIUS 3RW44 с ПК Подключение через системный интерфейс, для подключения к последовательному интерфейсу ПК/PG для локального параметрирования УПП	A	3UF7 940-0AA00-0	43,80	1	1 шт.	131
3UF7 940-0AA00-0							
Адаптер USB-COM							
	Для подключения кабеля к USB-интерфейсу ПК Рекомендуется для параметрирования устройств плавного пуска 3RW44, системы SIMOCODE pro 3UF7, модульной системой безопасности 3RKЗ, пускателей электродвигателей ET 200S/ ECOFAST/ET 200pro, с монитором безопасности AS-і, анализатором AS-і	B	3UF7 946-0AA00-0	38,20	1	1 шт.	131
Модуль подключения УПП 3RW44 к PROFIBUS							
	Опциональный модуль, интегрируемый в УПП, для возможности подключения устройства к PROFIBUS с функциональностью DPV1-Slave. Ha Y-link устройства плавного пуска имеет только функциональность DPV0-Slave.	A	3RW49 00-0KC00	272,-	1	1 шт.	131
3RW49 00-0KC00							
Внешняя панель индикации и управления							
	Опциональная панель для индикации параметров и управления функциями устройства плавного пуска Степень защиты смонтированной панели в дверце электрошкафа - IP54	-	3RW49 00-0AC00	272,-	1	1 шт.	131
	Соединительный кабель						
3RW49 00-0AC00	Для подключения внешней панели управления к системному интерфейсу устройства плавного пуска 3RW44 - Длина 0,5 м, плоский - Длина 0,5 м, круглый - Длина 1,0 м, круглый - Длина 2,5 м, круглый	A A A A	3UF7 932-0AA00-0 3UF7 932-0BA00-0 3UF7 937-0BA00-0 3UF7 933-0BA00-0	$\begin{aligned} & 10,50 \\ & 20,10 \\ & 22,50 \\ & 24,80 \end{aligned}$	1 1 1 1	1 шт. 1 шт. 1 шт. 1 шт.	131 131 131 131

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Запчасти

1) 3RW44 6. монтаж на стороне нагрузки.
2) Для монтажа на фронтальной стороне устройства.

Устройства плавного пуска SIRIUS 3RW 3RW44 с расширенными функциями

Дополнительная информация
Примеры применения УПП для нормальных условий пуска (CLASS 10)
Нормальные условия пуска Class 10 (пуск до 20 с, 350 \% х I_{n} двигателя),
Устройства плавного пуска должно выбираться равной или большей мощности запускаемого двигателя

Применение		Ленточный транспортер	Роликовый транспортер	Компрессор	Небольшой вентилятор ${ }^{1)}$	Hacoc	Гидравлический насос
Параметры пуска							
- Рампа напряжения и ограничение тока							
- Пусковое напряжение	\%	70	60	50	30	30	30
- Время разгона	c	10	10	10	10	10	10
- Ограничение тока		деактивировано	деактивировано	$4 \times I_{M}$	$4 \times I_{M}$	деактивировано	деактивировано
- Рампа крутящего момента							
- Пусковой момент		60	50	40	20	10	10
- Конечный момент		150	150	150	150	150	150
- Время разгона		10	10	10	10	10	10
- Импульс отрыва		деактивировано (0 mc)	деактивировано (0 mc)	$\begin{aligned} & \text { деактивировано } \\ & \text { (0 мс) } \end{aligned}$	$\begin{aligned} & \text { деактивировано } \\ & \text { (0 мс) } \end{aligned}$	$\begin{aligned} & \text { деактивировано } \\ & \text { (0 мс) } \end{aligned}$	$\begin{aligned} & \text { деактивировано } \\ & (0 \mathrm{mc}) \end{aligned}$
Тип останова		Плавный останов	Плав	Свободный	Свободный выбег	Останов насоса	Свободный выбег

Примеры применения для тяжелых условий пуска (CLASS 20)
Тяжелые условия пуска Class 20 (пуск до 40 с, 350 \% х I_{n} двигателя),
Мощность устройства плавного пуска должно быть на ступень выше, чем мощность запускаемого двигателя

Применение		Мешалка	Центрифуга	Фрезерный станок
Параметры пуска				
- Рампа напряжения и ограничение тока				
- Пусковое напряжение	\%	30	30	30
- Время разгона	c	30	30	30
- Ограничение тока		$4 \times I_{M}$	$4 \times I_{M}$	$4 \times I_{M}$
- Рампа крутящего момента				
- Пусковой момент		30	30	30
- Конечный момент		150	150	150
- Время разгона		30	30	30
- Импульс отрыва		деактивирован (0 мс)	деактивирован (0 мс)	деактивирован (0 мс)
Тип останова		Свободный выбег	Свободный выбег	Свободный выбег или торможение инжекцией постоянного тока

Примеры применения для особо тяжелых условий пуска (CLASS 30)
Особо тяжелые условия пуска Class 30 (пуск до $60,350 \% \times I_{n}$ двигателя),
Мощность устройства плавного пуска должно быть на 2 ступени выше, чем мощность запускаемого двигателя

1) Момент инерции вентилятора <10 x момента инерции двигателя.
2) Момент инерции вентилятора 10 x момента инерции двигателя

Примечание
\bar{B} этих таблицах приведены примеры значений и параметров устройств. Они служат исключительно для информации и не являются обязательными.
Настраиваемые значения зависят от каждого отдельного
применения и должны оптимизироваться при вводе устройств в эксплуатацию.
Параметры устроиств плавного пуска необходимо
проверить в программе Win-Soft Starter или с помощью
Technical Assistance.

Устройства плавного пуска SIRIUS 3RW
 3RW44 с расширенными функциями

3RW44

Варианты подключения 3RW44 к силовой цепи
Устройства плавного пуска SIRIUS 3RW44 могут работать при двух разных типах подключений.

- Стандартное подключение (в линию) Коммутационные аппараты для разъединения и защиты двигателя включаются последовательно с устройством плавного пуска. Двигатель подключается к устройству плавного пуска 3 кабелями.
- Подключение по схеме "внутри треугольника" Проводной монтаж аналогичен схеме для пускателей типа "звезда-треугольник". Фазы устройства плавного пуска включаются последовательно с отдельными обмотками двигателя. При таком подключении устройство плавного пуска должно проводить только фазный ток, составляющий ок. 58 \% от номинального тока двигателя (ток проводника).

Сравнение типов подключений

Стандартное подключение:
Номинальный ток УПП (I_{e}) соответствует номинальному току двигателя (I_{n}), З кабеля подводятся к двигателю

Подключение по схеме "внутри треугольника":
Номинальный ток УПП ($I_{\text {e }}$) соответствует ок. 58 \% от номинального тока двигателя (I_{n}), 6 кабелей подводятся к двигателю (как у пускателей по схеме "звезда-треугольник")

Какой тип подключения выбрать?

При использовании стандартного типа подключения получаются минимальные затраты на проводной монтаж. Этот тип подключения предпочтителен при большом удалении между УПП от электродвигателя.
При подключении по схеме "внутри треугольника" затраты на кабель в два раза выше, однако для той же мощности электродвигателя можно выбрать УПП меньшего типоразмера

Возможность выбора типа подключения между стандартным и подключением по схеме "внутри треугольника" обеспечивает оптимальное решение для каждого отдельного применения.
Функции торможения доступна только при стандартном подключении!

Проектирование

Электронные УПП 3RW44 рассчитаны на нормальные условия пуска. При тяжелых условиях пуска или при повышенной частоте коммутаций следует выбирать более мощное устройство.
При продолжительном разгоне, частых пусках, а так же при использовании функции торможения постоянным током, останова насоса или плавного останова рекомендуется применять электродвигатели с интегрированными PTCдатчиками, т.к. в данных режимах увеличивается токовая нагрузка на обмотки двигателя по сравнению со свободным выбегом и появляется необходимость использования функции термисторной защиты.
В фидере между УПП SIRIUS 3RW и двигателем не должно быть ёмкостных элементов (например, устройств компенсации реактивной мощности). Кроме того, запрещается одновременное использование статических систем компенсации реактивной мощности и систем динамической коррекции коэффициента мощности (Power Factor Correction) при разгоне и останове двигателя, чтобы избежать аварий в установке и/или выхода из строя устройства плавного пуска.
Предохранители/ автоматические выключатели и коммутационные аппараты подбираются из рекомендованных SIEMENS, исходя из условий прямого пуска и местных условий возникновения коротких замыканий и заказываются отдельно.
Система шунтирующих (байпасных) контактов и электронное реле защиты электродвигателя от перегрузки интегрированы в УПП 3RW44 и не должны заказываться отдельно.

При выборе автоматических выключателей (выбор расцепителя) необходимо учитывать высшие гармоники пускового тока.
Примечание
При запуске трехфазных двигателей во всех схемах пуска (прямой пуск, пуск по схеме "звезда-треугольник", плавный пуск), как правило, наблюдаются провалы напряжения. Питающий трансформатор должен подбираться таким образом, чтобы провал напряжения при пуске двигателя оставался в допустимых пределах. При слишком малом запасе мощности трансформатора следует обеспечить подачу напряжения управления из отдельной цепи (отдельно от источника напряжения силовой цепи), чтобы избежать возможного сбоя/ отключения УПП.

Аппаратный интерфейс, модуль коммуникации по PROFIBUS DP, программа параметрирования Soft Starter ES
Разъём на лицевой панели 3RW44 служит для подключения УПП к ПК для локального параметрирования (ПО Soft Starter ES заказывается отдельно) или для подключения внешней панели индикации и управления. Если в УПП установить дополнительный модуль коммуникации PROFIBUS, УПП 3RW44 может подключаться к PROFIBUS и выполнять обмен данными с помощью файлов GSD или программы Soft Starter ES Premium.

Библиотека модулей устройств плавного пуска SIRIUS 3RW44 для SIMATIC PCS 7
Библиотека модулей УПП SIRIUS 3RW44 для PCS 7 обеспечивает простую и удобную интеграцию этих устройств в систему управления производственным процессом SIMATIC PCS 7. Библиотека модулей устройств плавного пуска SIRIUS 3RW44 содержит диагностические и драйверные модули, соответствующие концепции драйверов и диагностики SIMATIC PCS 7, а также элементы (символы и панели (face plates)), необходимые для управления и контроля за процессами.

Руководство для SIRIUS 3RW44

Наряду со всей важной информацией о проектировании, вводе в эксплуатацию и сервисном обслуживании, руководство также содержит предложения по построению схем, а также технические данные всех устройств.
Программа выбора и моделирования Win-Soft Starter
С помощью этой программы можно подбирать все УПП фирмы Siemens с учетом различных параметров, таких как условия сети, данные двигателя и нагрузки, специальные требования конкретных условий применения и многое другое
Программа является действенным вспомогательным средством, избавляющим от длительных и сложных ручных расчетов для нахождения нужного УПП.

Программа выбора и моделирования Win-Soft Starter может быть загружена с сайта:
www.siemens.de/sanftstarter --> Software
Дополнительную информацию об устройствах плавного пуска смотрите также в Интернете:
www.siemens.de/sanftstarter

3RW44

Курс обучения SIRIUS Устройства плавного пуска (SD-SIRIUSO)
Чтобы обслуживающий персонал при проектировании, вводе в эксплуатацию, эксплуатации и техническом обслуживании владели актуальной информацией по устройствам, фирма Siemens предлагает двухдневный учебный курс по электронным УПП SIRIUS.
Дополнительную информацию см. на нашем веб-сайте SITRAIN:
www.siemens.de/sitrain
--> выбирать по краткому обозначению "SD-SIRIUSO"
Вопросы и заявки направляйте в сервисную службу SITRAIN:
В Германии:
Эл. почта: info@sitrain.com
Тел.: +49 (1805) 235611

В России:
Эл. почта: cecp.ru@siemens.com
Тел.: +7 (495) 737-1-737

